A273168 Denominators of coefficient triangle for expansion of x^(2*n) in terms of Chebyshev polynomials of the first kind T(2*m, x) (A127674).
1, 2, 2, 8, 2, 8, 16, 32, 16, 32, 128, 16, 32, 16, 128, 256, 256, 64, 512, 256, 512, 1024, 256, 2048, 512, 1024, 512, 2048, 2048, 8192, 4096, 8192, 2048, 8192, 4096, 8192, 32768, 2048, 4096, 2048, 8192, 2048, 4096, 2048, 32768, 65536, 65536, 8192, 32768, 16384, 32768, 8192, 131072, 65536, 131072, 262144, 65536, 262144, 32768, 65536, 32768, 524288, 131072, 262144, 131072, 524288
Offset: 0
Examples
The triangle a(n, m) begins: n\m 0 1 2 3 4 5 6 7 0: 1 1: 2 2 2: 8 2 8 3: 16 32 16 32 4: 128 16 32 16 128 5: 256 256 64 512 256 512 6: 1024 256 2048 512 1024 512 2048 7: 2048 8192 4096 8192 2048 8192 4096 8192 ... row 8: 32768 2048 4096 2048 8192 2048 4096 2048 32768, row 9: 65536 65536 8192 32768 16384 32768 8192 131072 65536 131072, ...
Crossrefs
Cf. A273167.
Programs
-
PARI
a(n, m) = if (m == 0, denominator((1/2^(2*n-1)) * binomial(2*n,n)/2), denominator((1/2^(2*n-1))*binomial(2*n, n-m))); tabl(nn) = for (n=0, nn, for (k=0, n, print1(a(n,k), ", ")); print()); \\ Michel Marcus, Jun 19 2016
Formula
a(n, m) = denominator(R(n, m)), n >= 0, m = 1, ..., n, with the rationals R(n, m) given by R(n, 0) = (1/2^(2*n-1)) * binomial(2*n,n)/2 and R(n ,m) = (1/2^(2*n-1))*binomial(2*n, n-m) for m =1..n, n >= 0.
Comments