cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273168 Denominators of coefficient triangle for expansion of x^(2*n) in terms of Chebyshev polynomials of the first kind T(2*m, x) (A127674).

Original entry on oeis.org

1, 2, 2, 8, 2, 8, 16, 32, 16, 32, 128, 16, 32, 16, 128, 256, 256, 64, 512, 256, 512, 1024, 256, 2048, 512, 1024, 512, 2048, 2048, 8192, 4096, 8192, 2048, 8192, 4096, 8192, 32768, 2048, 4096, 2048, 8192, 2048, 4096, 2048, 32768, 65536, 65536, 8192, 32768, 16384, 32768, 8192, 131072, 65536, 131072, 262144, 65536, 262144, 32768, 65536, 32768, 524288, 131072, 262144, 131072, 524288
Offset: 0

Views

Author

Wolfdieter Lang, Jun 12 2016

Keywords

Comments

The numerator sequence is given in A273167, where details are given.

Examples

			The triangle a(n, m) begins:
n\m     0    1    2    3    4    5    6    7
0:      1
1:      2    2
2:      8    2    8
3:     16   32   16   32
4:    128   16   32   16  128
5:    256  256   64  512  256  512
6:   1024  256 2048  512 1024  512 2048
7:   2048 8192 4096 8192 2048 8192 4096 8192
...
row 8: 32768 2048 4096 2048 8192 2048 4096 2048 32768,
row 9: 65536 65536 8192 32768 16384 32768 8192 131072 65536 131072,
...
		

Crossrefs

Cf. A273167.

Programs

  • PARI
    a(n, m) = if (m == 0, denominator((1/2^(2*n-1)) * binomial(2*n,n)/2), denominator((1/2^(2*n-1))*binomial(2*n, n-m)));
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(a(n,k), ", ")); print()); \\ Michel Marcus, Jun 19 2016

Formula

a(n, m) = denominator(R(n, m)), n >= 0, m = 1, ..., n, with the rationals R(n, m) given by R(n, 0) = (1/2^(2*n-1)) * binomial(2*n,n)/2 and R(n ,m) = (1/2^(2*n-1))*binomial(2*n, n-m) for m =1..n, n >= 0.