cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273170 Denominators of coefficient triangle for integrated even powers of cos(x) in terms of x and sin(2*m*x).

Original entry on oeis.org

1, 2, 4, 8, 4, 32, 16, 64, 64, 192, 128, 32, 128, 96, 1024, 256, 512, 256, 1024, 2048, 5120, 1024, 512, 8192, 3072, 8192, 5120, 24576, 2048, 16384, 16384, 49152, 16384, 81920, 49152, 114688, 32768, 4096, 16384, 4096, 65536, 4096, 16384, 28672, 524288, 65536, 131072, 32768, 65536, 131072, 65536, 32768, 1835008, 1048576, 2359296, 262144, 131072, 1048576, 65536, 524288, 327680, 2097152, 1835008, 4194304, 2359296, 10485760
Offset: 0

Views

Author

Wolfdieter Lang, Jun 13 2016

Keywords

Comments

See the numerator triangle A273169, also for the formula of int(cos^(2*n)(x), x) in terms of x and sin(2*m*x).

Examples

			See A273169, also for the rationals R(n,m).
The triangle a(n, m) begins:
n\m    0   1    2    3    4    5     6 ...
0:     1
1:     2   4
2:     8   4   32
3:    16  64   64  192
4:   128  32  128   96 1024
5:   256 512  256 1024 2048 5120
6:  1024 512 8192 3072 8192 5120 24576
...
row 7: 2048 16384 16384 49152 16384 81920 49152 114688,
row 8: 32768 4096 16384 4096 65536 4096 16384 28672 524288,
row 9: 65536 131072 32768 65536 131072 65536 32768 1835008 1048576 2359296,
row 10: 262144 131072 1048576 65536 524288 327680 2097152 1835008 4194304 2359296 10485760,
...
		

Crossrefs

Cf. A273169.

Programs

  • PARI
    a(n, m) = if (m == 0, denominator((1/2^(2*n))*binomial(2*n,n)), denominator((1/2^(2*n))*binomial(2*n, n-m)/m));
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(a(n,k), ", ")); print()); \\ Michel Marcus, Jun 19 2016

Formula

a(n, m) = denominator(R(n, m)) with the rationals R(n, m) defined by R(n, 0) = (1/2^(2*n))*binomial(2*n,n) and R(n, m) = (1/2^(2*n))*binomial(2*n, n-m)/m for m = 1, ..., n, n >= 0. See the Gradstein-Ryshik reference given in A273169 (where the sin arguments are falling).