A273170 Denominators of coefficient triangle for integrated even powers of cos(x) in terms of x and sin(2*m*x).
1, 2, 4, 8, 4, 32, 16, 64, 64, 192, 128, 32, 128, 96, 1024, 256, 512, 256, 1024, 2048, 5120, 1024, 512, 8192, 3072, 8192, 5120, 24576, 2048, 16384, 16384, 49152, 16384, 81920, 49152, 114688, 32768, 4096, 16384, 4096, 65536, 4096, 16384, 28672, 524288, 65536, 131072, 32768, 65536, 131072, 65536, 32768, 1835008, 1048576, 2359296, 262144, 131072, 1048576, 65536, 524288, 327680, 2097152, 1835008, 4194304, 2359296, 10485760
Offset: 0
Examples
See A273169, also for the rationals R(n,m). The triangle a(n, m) begins: n\m 0 1 2 3 4 5 6 ... 0: 1 1: 2 4 2: 8 4 32 3: 16 64 64 192 4: 128 32 128 96 1024 5: 256 512 256 1024 2048 5120 6: 1024 512 8192 3072 8192 5120 24576 ... row 7: 2048 16384 16384 49152 16384 81920 49152 114688, row 8: 32768 4096 16384 4096 65536 4096 16384 28672 524288, row 9: 65536 131072 32768 65536 131072 65536 32768 1835008 1048576 2359296, row 10: 262144 131072 1048576 65536 524288 327680 2097152 1835008 4194304 2359296 10485760, ...
Crossrefs
Cf. A273169.
Programs
-
PARI
a(n, m) = if (m == 0, denominator((1/2^(2*n))*binomial(2*n,n)), denominator((1/2^(2*n))*binomial(2*n, n-m)/m)); tabl(nn) = for (n=0, nn, for (k=0, n, print1(a(n,k), ", ")); print()); \\ Michel Marcus, Jun 19 2016
Formula
a(n, m) = denominator(R(n, m)) with the rationals R(n, m) defined by R(n, 0) = (1/2^(2*n))*binomial(2*n,n) and R(n, m) = (1/2^(2*n))*binomial(2*n, n-m)/m for m = 1, ..., n, n >= 0. See the Gradstein-Ryshik reference given in A273169 (where the sin arguments are falling).
Comments