cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273172 Triangle for denominators of coefficients for integrated odd powers of cos(x) in terms sin((2*m+1)*x).

Original entry on oeis.org

1, 4, 12, 8, 48, 80, 64, 64, 320, 448, 128, 64, 320, 1792, 2304, 512, 512, 1024, 7168, 9216, 11264, 1024, 4096, 4096, 14336, 6144, 45056, 53248, 16384, 49152, 81920, 16384, 147456, 180224, 212992, 245760, 32768, 24576, 40960, 16384, 147456, 90112, 106496, 983040, 1114112, 131072, 131072, 327680, 65536, 65536, 720896, 3407872, 1310720, 4456448, 4980736, 262144, 1572864, 524288, 917504, 393216, 11534336, 13631488, 1572864, 8912896, 19922944, 22020096
Offset: 0

Views

Author

Wolfdieter Lang, Jun 13 2016

Keywords

Comments

For the numerator triangle see A273171, also for the cos^(2*n+1) formula, and the Gradstein-Ryshik reference.

Examples

			The triangle a(n, m) begins:
n\m    0    1    2     3    4     5     6 ...
0:     1
1:     4   12
2:     8   48   80
3:    64   64  320   448
4:   128   64  320  1792 2304
5:   512  512 1024  7168 9216 11264
6:  1024 4096 4096 14336 6144 45056 53248
...
row 7: 16384 49152 81920 16384 147456 180224 212992 245760,
row 8: 32768 24576 40960 16384 147456 90112 106496 983040 1114112,
row 9: 131072 131072 327680 65536 65536 720896 3407872 1310720 4456448 4980736,
row 10: 262144 1572864 524288 917504 393216 11534336 13631488 1572864 8912896 19922944 22020096,...
For the head of the rational triangle see A273171.
		

Crossrefs

Cf. A273171.

Programs

  • PARI
    a(n, m) = denominator((1/2^(2*n))*binomial(2*n+1, n-m)/(2*m+1));
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(a(n,k), ", ")); print()); \\ Michel Marcus, Jun 19 2016

Formula

a(n, m) = denominator(R(n, m)) with the rationals R(n, m) = (1/2^(2*n))* binomial(2*n+1, n-m) / (2*m+1) for m = 0, ..., n, n >= 0. See the Gradstein-Ryshik reference given in A273171 (where the sin arguments are falling).