A273201 Integers which are prime power-like but not prime powers.
21, 33, 39, 65, 85, 95, 115, 133, 145, 155, 161, 185, 203, 205, 215, 217, 235, 259, 261, 265, 279, 287, 295, 301, 305, 329, 335, 341, 355, 365, 371, 395, 407, 413, 415, 427, 445, 451, 469, 473, 481, 485, 497
Offset: 1
Keywords
Examples
95 is in this sequence because the DTD of 95 has positive entries and nondecreasing rows and columns: [ 1 5 19 95] [ 4 14 76] [10 62] [52]
Programs
-
Mathematica
pplikeQ[n_] := Module[{T, DTD, DTD2}, If[n == 1 || PrimePowerQ[n], Return[False]]; T = Divisors[n]; DTD = Table[Differences[T, k], {k, 0, Length[T]-1}]; If[AnyTrue[Flatten[DTD], NonPositive], Return[False]]; DTD2 = Transpose[PadRight[#, Length[T], Infinity]& /@ DTD]; AllTrue[DTD, OrderedQ] && AllTrue[DTD2, OrderedQ]]; Select[Range[500], pplikeQ] (* Jean-François Alcover, Jun 28 2019 *)
-
Sage
# uses[is_prime_power_like from A273200] # Compare script in A273200. def is_A273201(n): return not is_prime_power(n) and is_prime_power_like(n) print(list(filter(is_A273201, range(1, 500))))
Comments