cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273240 Decimal expansion of Integral_{0..inf} x log(x)/(exp(x)-1) dx (negated).

Original entry on oeis.org

2, 4, 2, 0, 9, 5, 8, 9, 8, 5, 8, 2, 5, 9, 8, 8, 4, 1, 7, 7, 5, 7, 2, 3, 0, 3, 0, 1, 5, 3, 5, 4, 4, 7, 2, 2, 3, 1, 8, 9, 1, 6, 3, 3, 6, 8, 8, 1, 7, 0, 1, 3, 4, 2, 6, 1, 3, 2, 7, 2, 2, 1, 8, 0, 1, 7, 0, 8, 1, 6, 2, 0, 1, 5, 7, 7, 1, 3, 3, 3, 1, 4, 9, 1, 0, 4, 3, 4, 8, 9, 9, 2, 9, 8, 1, 0, 2, 9, 7, 5, 9
Offset: 0

Views

Author

Jean-François Alcover, May 18 2016

Keywords

Examples

			-0.242095898582598841775723030153544722318916336881701342613272218...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(1/6) Pi^2 (1 + Log[2Pi] - 12 Log[Glaisher]), 10, 101][[1]]
  • PARI
    default(realprecision, 100); (1/6)*(1-Euler)*Pi^2 + zeta'(2) \\ G. C. Greubel, Sep 07 2018

Formula

Equals (1/6)*(1-EulerGamma)*Pi^2+zeta'(2).
Also equals (1/6)*Pi^2*(1+log(2*Pi)-12*log(G)), where G is the Glaisher-Kinkelin constant.