cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273347 The sum of the areas of the bargraphs of semiperimeter n (n>=2).

Original entry on oeis.org

1, 4, 16, 60, 218, 778, 2744, 9600, 33391, 115638, 399137, 1374050, 4720272, 16187632, 55434424, 189607406, 647872199, 2211794804, 7545239986, 25722676402, 87641357150, 298456587038, 1015914399813, 3456670564220, 11757143968393, 39976448714086, 135887220346719
Offset: 2

Views

Author

Emeric Deutsch, Jun 03 2016

Keywords

Examples

			a(4) = 16  because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1], [1,2], [2,1], [2,2], [3] and, clearly, the sum of their areas is 3 + 3 + 3 + 4 + 3 = 16.
		

References

  • A. Blecher, C. Brennan, and A. Knopfmacher, Combinatorial parameters in bargraphs (preprint).

Crossrefs

Programs

  • Maple
    Q := sqrt(1-4*z+2*z^2+z^4): g := z^2*(2-z-z^3-z*Q)^2/(1-4*z+z^4+Q+z^2*(2+Q))^2; gser:= series(g,z = 0,40): seq(coeff(gser, z, m), m = 2 .. 35);
    # second Maple program:
    a:= proc(n) option remember;
          `if`(n<7, [0$2, 1, 4, 16, 60, 218, 778][n+1],
          ((69-115*n+28*n^2)*a(n-1) -(264-265*n+52*n^2)*a(n-2)
           +(3*(29-29*n+4*n^2))*a(n-3) -(3*(10-21*n+4*n^2))*a(n-4)
           +(4*n-9)*(5*n-29)*a(n-5) +(4*n-13)*(n-6)*a(n-6)
           +(n-7)*(4*n-9)*a(n-7))/(n*(4*n-13)))
        end:
    seq(a(n), n=2..30);  # Alois P. Heinz, Jun 04 2016
  • Mathematica
    b[n_, y_, t_] := b[n, y, t] = Expand[If[n==0, 1-t, If[t<0, 0, b[n-1, y+1, 1]] + If[t>0 || y<2, 0, b[n, y-1, -1]] + If[y<1, 0, b[n-1, y, 0]*z^y]]]; T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 1, Exponent[p, z]}]][b[n, 0, 0]]; a[n_] := (row = T[n]; row.Range[Length[row]]); Table[a[n], {n, 2, 30}] (* Jean-François Alcover, Nov 29 2016 after Alois P. Heinz's Maple code for A273346 *)

Formula

G.f.: g(z) = z^2 (2 - z - z^3 - z q )^2 /(1 - 4z + z^4 + q + z^2 q)^2, where q = sqrt(1 - 4z + 2z^2 + z^4) (see Section 4.3 of the Blecher et al. reference).
a(n) = Sum(k*A273346(n,k), k>=1).
a(n) = ((69-115*n+28*n^2)*a(n-1) -(264-265*n+52*n^2)*a(n-2) +(3*(29-29*n+4*n^2))*a(n-3) -(3*(10-21*n+4*n^2))*a(n-4) +(4*n-9) * (5*n-29)*a(n-5) +(4*n-13)*(n-6)*a(n-6) +(n-7)*(4*n-9)*a(n-7))/ (n*(4*n-13)) for n>=7. - Alois P. Heinz, Jun 04 2016