A293951
Number of linear extensions of a poset whose Hasse diagram consists of n binary shrubs with type B_n joins.
Original entry on oeis.org
1, 9, 477, 74601, 25740261, 16591655817, 17929265150637, 30098784753112329, 74180579084559895221, 256937013876000351610089, 1208025937371403268201735037, 7494692521096248546330688437801, 59931935202159196095445595508666501
Offset: 0
-
LMLlist[m_, len_] := Table[(-1)^(n + 1) (m n)!, {n, 1, len}]*
Delete [CoefficientList[Series[Log[MittagLefflerE[m, z]], {z, 0, len}], z], 1];
LMLlist[3, 13] (* Peter Luschny, Aug 26 2018 *)
A318253
Coefficient of x of the OmegaPolynomials (A318146), T(n, k) = [x] P(n, k) with n>=1 and k>=0, square array read by ascending antidiagonals.
Original entry on oeis.org
0, 0, 1, 0, 1, 0, 0, 1, -2, 0, 0, 1, -9, 16, 0, 0, 1, -34, 477, -272, 0, 0, 1, -125, 11056, -74601, 7936, 0, 0, 1, -461, 249250, -14873104, 25740261, -353792, 0, 0, 1, -1715, 5699149, -2886735625, 56814228736, -16591655817, 22368256, 0, 0, 1, -6434, 132908041, -574688719793, 122209131374375, -495812444583424, 17929265150637, -1903757312, 0
Offset: 1
[n\k][0 1 2 3 4 5 ...]
------------------------------------------------------------------
[1] 0, 1, 0, 0, 0, 0, ... [A063524]
[2] 0, 1, -2, 16, -272, 7936, ... [A000182]
[3] 0, 1, -9, 477, -74601, 25740261, ... [A293951]
[4] 0, 1, -34, 11056, -14873104, 56814228736, ... [A273352]
[5] 0, 1, -125, 249250, -2886735625, 122209131374375, ... [A318258]
[6] 0, 1, -461, 5699149, -574688719793, 272692888959243481, ...
[A010763]
-
# Prints square array row-wise. The function OmegaPolynomial is defined in A318146.
for n from 1 to 6 do seq(coeff(OmegaPolynomial(n, k), x, 1), k=0..6) od;
# In the sequence format:
0, seq(seq(coeff(OmegaPolynomial(n-k+1, k), x, 1), k=0..n), n=1..9);
# Alternatively, based on the recurrence of the André numbers:
ANum := proc(m, n) option remember; if n = 0 then return 1 fi;
`if`(modp(n, m) = 0, -1, 1); [seq(m*k, k=0..(n-1)/m)];
%%*add(binomial(n, k)*ANum(m, k), k in %) end:
TNum := proc(n,k) if k=1 then 1 elif k=0 or n=1 then 0 else ANum(n, n*k-1) fi end:
for n from 1 to 6 do seq(TNum(n, k), k = 0..6) od;
-
OmegaPolynomial[m_, n_] := Module[{S}, S = Series[MittagLefflerE[m, z]^x, {z, 0, 10}]; Expand[(m*n)! Coefficient[S, z, n]]];
T[n_, k_] := D[OmegaPolynomial[n, k], x] /. x -> 0;
Table[T[n - k, k], {n, 1, 10}, {k, 0, n - 1}] // Flatten (* Jean-François Alcover, Nov 27 2023 *)
-
# Prints the array row-wise. The function OmegaPolynomial is in A318146.
for m in (1..6):
print([0] + [list(OmegaPolynomial(m, n))[1] for n in (1..6)])
# Alternatively, based on the recurrence of the André numbers:
@cached_function
def ANum(m, n):
if n == 0: return 1
t = [m*k for k in (0..(n-1)//m)]
s = sum(binomial(n, k)*ANum(m, k) for k in t)
return -s if m.divides(n) else s
def TNum(m, n):
if n == 1: return 1
if n == 0 or m == 1: return 0
return ANum(m, m*n-1)
for m in (1..6): print([TNum(m, n) for n in (0..6)])
A318258
a(n) = [x] OmegaPolynomial(5, n). OmegaPolynomials are defined in A318146.
Original entry on oeis.org
0, 1, -125, 249250, -2886735625, 122209131374375, -14455143383196875000, 4006210678487307667578125, -2297417123000769120910212890625, 2485076260705905645263720799941406250, -4719878705811419698488114573981055908203125
Offset: 0
-
# The function OmegaPolynomial is defined in A318146.
seq(coeff(OmegaPolynomial(5, n), x, 1), n=0..11);
-
LMlist[m_, len_] := Table[(m n)!, {n, 0, len}]*
CoefficientList[Series[Log[MittagLefflerE[m, z]], {z, 0, len}], z];
LMlist[5, 13]
A318148
Coefficients of the Omega polynomials of order 4, triangle T(n,k) read by rows with 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, -34, 35, 0, 11056, -16830, 5775, 0, -14873104, 27560780, -15315300, 2627625, 0, 56814228736, -119412815760, 84786627900, -24734209500, 2546168625, 0, -495812444583424, 1140896479608800, -948030209181000, 364143337057500, -65706427536750, 4509264634875
Offset: 0
[0] [1]
[1] [0, 1]
[2] [0, -34, 35]
[3] [0, 11056, -16830, 5775]
[4] [0, -14873104, 27560780, -15315300, 2627625]
[5] [0, 56814228736, -119412815760, 84786627900, -24734209500, 2546168625]
All row sums are 1, alternating row sums (taken absolute) are
A211212.
-
# See A318146 for the missing functions.
FL([seq(CL(OmegaPolynomial(4, n)), n=0..8)]);
-
(* OmegaPolynomials are defined in A318146 *)
Table[CoefficientList[OmegaPolynomial[4, n], x], {n, 0, 6}] // Flatten
-
# See A318146 for the function OmegaPolynomial.
[list(OmegaPolynomial(4, n)) for n in (0..6)]
Showing 1-4 of 4 results.
Comments