A273352
a(n) = 2^(2n+2) F(n) where F(n) is Ramanujan's F(n) = Sum_{k>=1} k^(4n-1)/(e^(Pi*k)-1) - 16^n* Sum_{k>=1} k^(4n-1)/(e^(4*Pi*k)-1).
Original entry on oeis.org
1, 34, 11056, 14873104, 56814228736, 495812444583424, 8575634961418940416, 265929039218907754399744, 13722623393637762299131396096, 1112372064432735526930220874072064, 135292015985218004848567636630910795776, 23782283324940089109797537284278352042000384
Offset: 1
-
S := proc(n, k) option remember;
if k=0 then `if`(n=0, 1, 0) else S(n, k-1) + S(n-1, n-k) fi end:
A273352 := n -> S(4*n-1, 4*n-1)/2^(2*n-1):
seq(A273352(n), n=1..12); # Peter Luschny, Jan 18 2017
-
Table[2^(2*n + 2)*BernoulliB[4*n]*(1 - 2^(4*n))/(8*n), {n, 1, 10}] (* G. C. Greubel, May 21 2016 *)
(* Function LMLlist defined in A293951 *)
LMLlist[4, 13] (* Peter Luschny, Aug 26 2018 *)
A293950
Number of linear extensions of a poset whose Hasse diagram consists of n binary shrubs with type A_n joins.
Original entry on oeis.org
1, 2, 40, 3194, 666160, 287316122, 222237912664, 280180369563194, 537546603651987424, 1490424231594917313242, 5735930050702709579598280, 29665120602262869704075225594, 200776204583497637546703088929040, 1739317344037357729592558320480494362
Offset: 0
A293952
Number of linear extensions of a poset whose Hasse diagram consists of n binary shrubs with type E_n joins.
Original entry on oeis.org
1, 3, 99, 11259, 3052323, 1620265923, 1488257158851, 2172534146099019, 4736552519729393091, 14708695606607601165843, 62671742039942099631403299, 355493170380387030721038571419, 2618304731622723256262677112102883, 24521387779014982719407393681918617443
Offset: 0
A293953
Number of linear extensions of a poset whose Hasse diagram consists of n binary shrubs with type S_n joins.
Original entry on oeis.org
1, 5, 169, 19241, 5216485, 2769073949, 2543467934449, 3712914075133121, 8094884285992309261, 25137521105896509819605, 107107542395866078895709049, 607546536582495444795794603801, 4474746926116218974619451907008885, 41907652406924609850893820950967654989
Offset: 0
A318253
Coefficient of x of the OmegaPolynomials (A318146), T(n, k) = [x] P(n, k) with n>=1 and k>=0, square array read by ascending antidiagonals.
Original entry on oeis.org
0, 0, 1, 0, 1, 0, 0, 1, -2, 0, 0, 1, -9, 16, 0, 0, 1, -34, 477, -272, 0, 0, 1, -125, 11056, -74601, 7936, 0, 0, 1, -461, 249250, -14873104, 25740261, -353792, 0, 0, 1, -1715, 5699149, -2886735625, 56814228736, -16591655817, 22368256, 0, 0, 1, -6434, 132908041, -574688719793, 122209131374375, -495812444583424, 17929265150637, -1903757312, 0
Offset: 1
[n\k][0 1 2 3 4 5 ...]
------------------------------------------------------------------
[1] 0, 1, 0, 0, 0, 0, ... [A063524]
[2] 0, 1, -2, 16, -272, 7936, ... [A000182]
[3] 0, 1, -9, 477, -74601, 25740261, ... [A293951]
[4] 0, 1, -34, 11056, -14873104, 56814228736, ... [A273352]
[5] 0, 1, -125, 249250, -2886735625, 122209131374375, ... [A318258]
[6] 0, 1, -461, 5699149, -574688719793, 272692888959243481, ...
[A010763]
-
# Prints square array row-wise. The function OmegaPolynomial is defined in A318146.
for n from 1 to 6 do seq(coeff(OmegaPolynomial(n, k), x, 1), k=0..6) od;
# In the sequence format:
0, seq(seq(coeff(OmegaPolynomial(n-k+1, k), x, 1), k=0..n), n=1..9);
# Alternatively, based on the recurrence of the André numbers:
ANum := proc(m, n) option remember; if n = 0 then return 1 fi;
`if`(modp(n, m) = 0, -1, 1); [seq(m*k, k=0..(n-1)/m)];
%%*add(binomial(n, k)*ANum(m, k), k in %) end:
TNum := proc(n,k) if k=1 then 1 elif k=0 or n=1 then 0 else ANum(n, n*k-1) fi end:
for n from 1 to 6 do seq(TNum(n, k), k = 0..6) od;
-
OmegaPolynomial[m_, n_] := Module[{S}, S = Series[MittagLefflerE[m, z]^x, {z, 0, 10}]; Expand[(m*n)! Coefficient[S, z, n]]];
T[n_, k_] := D[OmegaPolynomial[n, k], x] /. x -> 0;
Table[T[n - k, k], {n, 1, 10}, {k, 0, n - 1}] // Flatten (* Jean-François Alcover, Nov 27 2023 *)
-
# Prints the array row-wise. The function OmegaPolynomial is in A318146.
for m in (1..6):
print([0] + [list(OmegaPolynomial(m, n))[1] for n in (1..6)])
# Alternatively, based on the recurrence of the André numbers:
@cached_function
def ANum(m, n):
if n == 0: return 1
t = [m*k for k in (0..(n-1)//m)]
s = sum(binomial(n, k)*ANum(m, k) for k in t)
return -s if m.divides(n) else s
def TNum(m, n):
if n == 1: return 1
if n == 0 or m == 1: return 0
return ANum(m, m*n-1)
for m in (1..6): print([TNum(m, n) for n in (0..6)])
A318258
a(n) = [x] OmegaPolynomial(5, n). OmegaPolynomials are defined in A318146.
Original entry on oeis.org
0, 1, -125, 249250, -2886735625, 122209131374375, -14455143383196875000, 4006210678487307667578125, -2297417123000769120910212890625, 2485076260705905645263720799941406250, -4719878705811419698488114573981055908203125
Offset: 0
-
# The function OmegaPolynomial is defined in A318146.
seq(coeff(OmegaPolynomial(5, n), x, 1), n=0..11);
-
LMlist[m_, len_] := Table[(m n)!, {n, 0, len}]*
CoefficientList[Series[Log[MittagLefflerE[m, z]], {z, 0, len}], z];
LMlist[5, 13]
A318147
Coefficients of the Omega polynomials of order 3, triangle T(n,k) read by rows with 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, -9, 10, 0, 477, -756, 280, 0, -74601, 142362, -83160, 15400, 0, 25740261, -55429920, 40900860, -12612600, 1401400, 0, -16591655817, 38999319642, -33465991104, 13440707280, -2572970400, 190590400
Offset: 0
[0] [1]
[1] [0, 1]
[2] [0, -9, 10]
[3] [0, 477, -756, 280]
[4] [0, -74601, 142362, -83160, 15400]
[5] [0, 25740261, -55429920, 40900860, -12612600, 1401400]
[6] [0, -16591655817, 38999319642, -33465991104, 13440707280, -2572970400,190590400]
All row sums are 1, alternating row sums (taken absolute) are
A002115.
-
# See A318146 for the missing functions.
FL([seq(CL(OmegaPolynomial(3, n)), n=0..8)]);
-
(* OmegaPolynomials are defined in A318146 *)
Table[CoefficientList[OmegaPolynomial[3, n], x], {n, 0, 6}] // Flatten
-
# See A318146 for the function OmegaPolynomial.
[list(OmegaPolynomial(3, n)) for n in (0..6)]
A318255
Associated Omega numbers of order 3, triangle T(n,k) read by rows for n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 10, -9, 1, 28, -504, 477, 1, 55, -4158, 78705, -74601, 1, 91, -18018, 1432431, -27154764, 25740261, 1, 136, -55692, 11595870, -923261976, 17503377480, -16591655817, 1, 190, -139536, 60087690, -12529983960, 997692516360, -18914487631380, 17929265150637
Offset: 0
Triangle starts:
[0] 1
[1] 1, 1
[2] 1, 10, -9
[3] 1, 28, -504, 477
[4] 1, 55, -4158, 78705, -74601
[5] 1, 91, -18018, 1432431, -27154764, 25740261
[6] 1, 136, -55692, 11595870, -923261976, 17503377480, -16591655817
-
# The function TNum is defined in A318253.
T := (m, n, k) -> `if`(k=0, 1, binomial(m*n-1, m*(n-k))*TNum(m, k)):
for n from 0 to 6 do seq(T(3, n, k), k=0..n) od;
-
# uses[AssociatedOmegaNumberTriangle from A318254]
A318255Triangle = lambda dim: AssociatedOmegaNumberTriangle(3, dim)
print(A318255Triangle(8))
Showing 1-8 of 8 results.
Comments