cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273401 Numbers n such that n and n + 1 have exactly the same number of odd divisors.

Original entry on oeis.org

1, 5, 6, 10, 11, 12, 13, 19, 22, 23, 28, 37, 40, 43, 46, 47, 49, 52, 54, 58, 61, 65, 67, 69, 73, 77, 79, 82, 84, 88, 96, 103, 106, 110, 112, 114, 119, 129, 132, 136, 140, 148, 151, 154, 155, 157, 163, 166, 172, 178, 182, 185, 186, 191, 192, 193, 203, 204, 211, 215, 216, 219, 220, 221
Offset: 1

Views

Author

Juri-Stepan Gerasimov, May 26 2016

Keywords

Comments

If A001227(n) = A001227(n*2^m) for m >= 0 then:
1) A001227(n) is equal to number of ways to write 2n - 1 as (4*x + 2)*y + 4*x + 1 where x and y are nonnegative integers;
2) A001227(n) is equal to number of distinct values of k if k/(2n-1) + 1 divides (k/(2n - 1))^(k/(2n - 1)) + k, (k/(2n - 1))^k + k/(2n - 1) and k^(k/(2n - 1)) + k/(2n - 1).

Examples

			5 and 6 have both two odd divisors: (1 and 5) and (1 and 3) respectively; so 5 is a term in the sequence.
		

Crossrefs

Cf. A001227, A206581 (primes in a(n)).

Programs