cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A273510 a(n) is the largest level N such that genus of modular curve X_0(N) is n (or -1 if no such curve exists).

Original entry on oeis.org

25, 49, 50, 64, 81, 75, 121, 100, 169, 128, 127, 147, 157, 163, 181, 193, 199, 289, 229, 243, 239, 257, 361, 283, 293, 313, 343, 337, 349, 353, 373, 379, 397, 409, 421, 529, 439, 457, 463, 467, 487, 499, 509, 523, 541, 547, 557, 577, 625, 601, 613, 619, 631, 643, 661, 673, 677, 691, 841, 667, 733
Offset: 0

Views

Author

Gheorghe Coserea, May 23 2016

Keywords

Comments

a(10^7) = 120000007 is the largest value in the first 1+10^7 terms of the sequence.
The exception occurs first at a(150) = -1. - Georg Fischer, Feb 15 2019

Examples

			For n = 0 we have 0 = A001617(k) when k is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 25 (A091401); the largest of this values is 25 therefore a(0) = 25.
For n = 1 we have 1 = A001617(k) when k is 11, 14, 15, 17, 19, 20, 21, 24, 27, 32, 36, 49 (A091403); the largest of this values is 49 therefore a(1) = 49.
For n = 2 we have 2 = A001617(k) when k is 22, 23, 26, 28, 29, 31, 37, 50 (A091404); the largest of this values is 50 therefore a(2) = 50.
For n = 150 (= A054729(1)) we have 150 <> A001617(k) for all k therefore a(150) = -1.
		

Crossrefs

Programs

  • Mathematica
    a1617[n_] := If[n < 1, 0, 1 + Sum[MoebiusMu[d]^2 n/d/12 - EulerPhi[GCD[d, n/d]]/2, {d, Divisors[n]}] - Count[(#^2 - # + 1)/n& /@ Range[n], ?IntegerQ]/3 - Count[(#^2 + 1)/n& /@ Range[n], ?IntegerQ]/4];
    seq[n_] := Module[{a, bnd}, a = Table[-1, {n+1}]; bnd = 12n + 18 Floor[Sqrt[n] ] + 100; For[k = 1, k <= bnd, k++, g = a1617[k]; If[g <= n, a[[g+1]] = k]]; a];
    seq[60] (* Jean-François Alcover, Nov 20 2018, after Gheorghe Coserea and Michael Somos in A001617 *)
  • PARI
    A000089(n) = {
      if (n%4 == 0 || n%4 == 3, return(0));
      if (n%2 == 0, n \= 2);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k, 1] % 4 == 3, 0, 2));
    };
    A000086(n) = {
      if (n%9 == 0 || n%3 == 2, return(0));
      if (n%3 == 0, n \= 3);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k, 1] % 3 == 2, 0, 2));
    };
    A001615(n) = {
      my(f = factor(n), fsz = matsize(f)[1],
         g = prod(k=1, fsz, (f[k, 1]+1)),
         h = prod(k=1, fsz, f[k, 1]));
      return((n*g)\h);
    };
    A001616(n) = {
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, f[k, 1]^(f[k, 2]\2) + f[k, 1]^((f[k, 2]-1)\2));
    };
    A001617(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2;
    seq(n) = {
      my(a = vector(n+1, g, -1), bnd = 12*n + 18*sqrtint(n) + 100, g);
      for (k = 1, bnd, g = A001617(k); if (g <= n, a[g+1] = k));
      return(a);
    };
    seq(60)

Formula

Let S(n) = {k, n = A001617(k)}; if the level set S(n) is not empty then a(n) = max S(n) and A054728(n) = min S(n) and A273445(n) = card S(n), otherwise a(n) = A054728(n) = -1 and A273445(n) = 0.
Showing 1-1 of 1 results.