A273459 Even numbers such that the sum of the odd divisors is a prime p and the sum of the even divisors is 2p.
18, 50, 578, 1458, 3362, 4802, 6962, 10082, 15842, 20402, 31250, 34322, 55778, 57122, 59858, 167042, 171698, 293378, 559682, 916658, 982802, 1062882, 1104098, 1158242, 1195058, 1367858, 1407842, 1414562, 1468898, 1659842, 2380562, 2406818, 2705138, 2789522
Offset: 1
Keywords
Examples
18 is in the sequence because the divisors of 18 are {1, 2, 3, 6, 9, 18}. The sum of the odd divisors is 1 + 3 + 9 = 13 and the sum of the even divisors is 2 + 6 + 18 = 26 = 2*13.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): for n from 2 by 2 to 500000 do: y:=divisors(n):n1:=nops(y):s0:=0:s1:=0: for k from 1 to n1 do: if irem(y[k], 2)=0 then s0:=s0+ y[k]: else s1:=s1+ y[k]: fi: od: ii:=0: if isprime(s1) and s0=2*s1 then printf(`%d, `, n): else fi: od:
-
Mathematica
Select[Range[2, 3000000, 2], And[PrimeQ[Total@ Select[#, EvenQ]/2], PrimeQ@ Total@ Select[#, OddQ]] &@ Divisors@ # &] (* Michael De Vlieger, May 30 2016 *) sodpQ[n_]:=Module[{d=Divisors[n],s},s=Total[Select[d,OddQ]];PrimeQ[ s] && Total[ Select[d,EvenQ]]==2s]; Select[Range[2,279*10^4,2],sodpQ] (* Harvey P. Dale, Dec 01 2020 *) 2 * Select[Range[1, 1200, 2]^2, PrimeQ@DivisorSigma[1, #] &] (* Amiram Eldar, Jul 19 2022 *)
-
PARI
is(n)=my(t); n%4==2 && issquare(n/2,&t) && isprime(n/2+t+1) \\ Charles R Greathouse IV, Jun 08 2016
Formula
a(n) >> n^2. - Charles R Greathouse IV, Jun 08 2016
Comments