cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273459 Even numbers such that the sum of the odd divisors is a prime p and the sum of the even divisors is 2p.

Original entry on oeis.org

18, 50, 578, 1458, 3362, 4802, 6962, 10082, 15842, 20402, 31250, 34322, 55778, 57122, 59858, 167042, 171698, 293378, 559682, 916658, 982802, 1062882, 1104098, 1158242, 1195058, 1367858, 1407842, 1414562, 1468898, 1659842, 2380562, 2406818, 2705138, 2789522
Offset: 1

Views

Author

Michel Lagneau, May 30 2016

Keywords

Comments

a(n) is of the form 2q^2 where q is an odd numbers for which sigma(q^2) is prime (A193070).
The corresponding primes p are 13, 31, 307, 1093, 1723, 2801, 3541, 5113, 8011, 10303, 19531, 17293, 28057, 30941, 30103, 88741, 86143, 147073, 292561, 459007, 492103, 797161, 552793, 579883, 598303, 684757, 704761, 732541, 735307, 830833, 1191373, 1204507, ...
We observe an interesting property: each prime p is element of A053183 (primes of the form m^2 + m + 1 when m is prime) or element of A247837 (primes of the form sigma(2m-1) for a number m) or element of both A053183 and A247837.
Examples:
The numbers 13, 31, 307, 1723, 3541, 5113,... are in A053183;
The numbers 13, 31, 307, 1093, 1723, 2801, 3541,...are in A247837;
The numbers 13, 31, 307, 1723, 3541,... are in A053183 and A247837.

Examples

			18 is in the sequence because the divisors of 18 are {1, 2, 3, 6, 9, 18}. The sum of the odd divisors is 1 + 3 + 9 = 13 and the sum of the even divisors is 2 + 6 + 18 = 26 = 2*13.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    for n from 2 by 2  to 500000 do:
       y:=divisors(n):n1:=nops(y):s0:=0:s1:=0:
         for k from 1 to n1 do:
           if irem(y[k], 2)=0
            then
            s0:=s0+ y[k]:
            else
            s1:=s1+ y[k]:
          fi:
         od:
         ii:=0:
            if isprime(s1) and s0=2*s1
            then
            printf(`%d, `, n):
             else fi:
         od:
  • Mathematica
    Select[Range[2, 3000000, 2], And[PrimeQ[Total@ Select[#, EvenQ]/2], PrimeQ@ Total@ Select[#, OddQ]] &@ Divisors@ # &] (* Michael De Vlieger, May 30 2016 *)
    sodpQ[n_]:=Module[{d=Divisors[n],s},s=Total[Select[d,OddQ]];PrimeQ[ s] && Total[ Select[d,EvenQ]]==2s]; Select[Range[2,279*10^4,2],sodpQ] (* Harvey P. Dale, Dec 01 2020 *)
    2 * Select[Range[1, 1200, 2]^2, PrimeQ@DivisorSigma[1, #] &] (* Amiram Eldar, Jul 19 2022 *)
  • PARI
    is(n)=my(t); n%4==2 && issquare(n/2,&t) && isprime(n/2+t+1) \\ Charles R Greathouse IV, Jun 08 2016

Formula

a(n) >> n^2. - Charles R Greathouse IV, Jun 08 2016
a(n) = 2 * A278911(n) = 2 * A193070(n)^2. - Amiram Eldar, Jul 19 2022