A273460 Numbers n such that sum of the divisors of n (except 1 and n) is equal to the product of the digits of n.
98, 101, 103, 107, 109, 307, 329, 401, 409, 503, 509, 601, 607, 701, 709, 809, 907, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1201, 1301, 1303, 1307, 1409, 1601, 1607, 1609, 1709, 1801, 1901
Offset: 1
Examples
sigma(98) - 98 - 1 = 171 - 98 - 1 = 72 and 8*9 = 72 so 98 is in the sequence.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): for n from 1 to 3000 do: q:=convert(n,base,10):n0:=nops(q): pr:=product('q[i]', 'i'=1..n0):p:=sigma(n)-n-1: if p=pr then printf(`%d, `,n): else fi: od:
-
Mathematica
Do[If[DivisorSigma[1, n]-n-1==Apply[Times, IntegerDigits[n]], Print[n]], {n, 2000}] Select[Range[2,2000],Total[Most[Rest[Divisors[#]]]]==Times@@ IntegerDigits[ #]&] (* Harvey P. Dale, Jul 20 2019 *)
Comments