cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273460 Numbers n such that sum of the divisors of n (except 1 and n) is equal to the product of the digits of n.

Original entry on oeis.org

98, 101, 103, 107, 109, 307, 329, 401, 409, 503, 509, 601, 607, 701, 709, 809, 907, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1201, 1301, 1303, 1307, 1409, 1601, 1607, 1609, 1709, 1801, 1901
Offset: 1

Views

Author

Michel Lagneau, May 23 2016

Keywords

Comments

Or numbers n such that A048050(n) = A007954(n).
Most of the terms are primes which have at least one 0 among their digits (A056709). The composite numbers of the sequence are 98, 329, 3383, 4343, 5561, 6623, 12773, 17267, 21479, 57721, 129383, 136259, 142943, 172793, 246959, 256631, 292571,...

Examples

			sigma(98) - 98 - 1 = 171 - 98 - 1 = 72 and 8*9 = 72 so 98 is in the sequence.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    for n from 1 to 3000 do:
      q:=convert(n,base,10):n0:=nops(q):
      pr:=product('q[i]', 'i'=1..n0):p:=sigma(n)-n-1:
       if p=pr
        then
        printf(`%d, `,n):
        else
       fi:
    od:
  • Mathematica
    Do[If[DivisorSigma[1, n]-n-1==Apply[Times, IntegerDigits[n]], Print[n]], {n, 2000}]
    Select[Range[2,2000],Total[Most[Rest[Divisors[#]]]]==Times@@ IntegerDigits[ #]&] (* Harvey P. Dale, Jul 20 2019 *)