cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273616 Number of ordered ways to write n as x^2 + y^2 + z^2 + w^2 with (3*x^2+13*y^2)*z a square, where x,y,z,w are nonnegative integers.

Original entry on oeis.org

1, 4, 4, 2, 5, 8, 4, 2, 4, 8, 11, 4, 2, 10, 8, 1, 4, 12, 10, 8, 9, 8, 9, 1, 4, 17, 16, 6, 3, 16, 8, 1, 4, 8, 18, 10, 8, 12, 13, 2, 10, 18, 9, 8, 5, 17, 11, 3, 2, 15, 22, 7, 13, 15, 17, 4, 6, 10, 11, 14, 2, 18, 17, 1, 5, 23, 13, 9, 13, 14, 14, 1, 8, 16, 26, 8, 4, 16, 7, 1, 8
Offset: 0

Views

Author

Zhi-Wei Sun, May 26 2016

Keywords

Comments

Conjecture: For each ordered pair (a,b) = (3,13), (5,11), (15,57), (15,165), (138,150), any natural number can be written as x^2 + y^2 + z^2 + w^2 with (a*x^2+b*y^2)*z a square, where x,y,z,w are nonnegative integers.
For more conjectural refinements of Lagrange's four-square theorem, see the author's preprint arXiv:1604.06723.

Examples

			a(15) = 1 since 15 = 2^2 + 1^2 + 1^2 + 3^2 with (3*2^2+13*1^2)*1 = 5^2.
a(23) = 1 since 23 = 3^2 + 3^2 + 1^2 + 2^2 with (3*3^2+13*3^2)*1 = 12^2.
a(31) = 1 since 31 = 2^2 + 1^2 + 1^2 + 5^2 with (3*2^2+13*1^2)*1 = 5^2.
a(63) = 1 since 63 = 6^2 + 1^2 + 1^2 + 5^2 with (3*6^2+13*1^2)*1 = 11^2.
a(71) = 1 since 71 = 6^2 + 3^2 + 1^2 + 5^2 with (3*6^2+13*3^2)*1 = 15^2.
a(79) = 1 since 79 = 5^2 + 3^2 + 3^2 + 6^2 with (3*5^2+13*3^2)*3 = 24^2.
a(223) = 1 since 223 = 2^2 + 13^2 + 1^2 + 7^2 with (3*2^2+13*13^2)*1 = 47^2.
a(303) = 1 since 303 = 2^2 + 13^2 + 9^2 + 7^2 with (3*2^2+13*13^2)*9 = 141^2.
a(2703) = 1 since 2703 = 15^2 + 25^2 + 22^2 + 37^2 with (3*15^2+13*25^2)*22 = 440^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
    Do[r=0;Do[If[SQ[n-x^2-y^2-z^2]&&SQ[(3x^2+13y^2)z],r=r+1],{x,0,Sqrt[n]},{y,0,Sqrt[n-x^2]},{z,0,Sqrt[n-x^2-y^2]}];Print[n," ",r];Label[aa];Continue,{n,0,80}]