A273650 a(n) = A000594(n) mod n.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 8, 0, 0, 0, 10, 0, 7, 0, 0, 20, 1, 0, 0, 16, 0, 0, 24, 0, 21, 0, 21, 32, 0, 0, 31, 22, 27, 0, 30, 0, 31, 24, 0, 22, 27, 0, 0, 0, 21, 28, 29, 0, 45, 0, 54, 4, 14, 0, 49, 54, 0, 0, 30, 24, 64, 36, 45, 0, 19, 0, 67, 70, 0, 32, 42, 54, 37, 0, 0, 18
Offset: 1
Keywords
Examples
tau(10) mod 10 = (-115920) mod 10 = 0, tau(11) mod 11 = 534612 mod 11 = 1.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a[n_] := Mod[RamanujanTau[n], n]; Array[a, 100] (* Amiram Eldar, Jan 08 2025 *)
-
PARI
a(n)=ramanujantau(n)%n \\ assumes the GRH; Charles R Greathouse IV, May 27 2016
-
Python
from sympy import divisor_sigma def A273650(n): return -840*(pow(m:=n+1>>1,2,n)*(0 if n&1 else pow(m*divisor_sigma(m),2,n))+(sum(pow(i,4,n)*divisor_sigma(i)*divisor_sigma(n-i) for i in range(1,m))<<1)) % n # Chai Wah Wu, Nov 08 2022
Formula
a(n) = A000594(n) mod n.
From Amiram Eldar, Jan 08 2025: (Start)
a(A063938(n)) = 0.
abs(a(A295654(n))) = 1. (End)