A273691 Integer area of primitive cyclic quadrilaterals with integer sides and rational radius.
12, 60, 108, 120, 120, 168, 192, 192, 234, 240, 300, 360, 360, 420, 420, 420, 420, 420, 420, 432, 540, 540, 588, 600, 660, 660, 714, 768, 840, 924, 960, 960, 966, 1008, 1008, 1008, 1080, 1080, 1080, 1092, 1134, 1200
Offset: 1
Keywords
Examples
a, b, c, d, S, r 4, 4, 3, 3, 12, 5/2 12, 12, 5, 5, 60, 13/2 14, 13, 13, 4, 108, 65/8 15, 15, 8, 8, 120, 17/2 21, 10, 10, 9, 120, 85/8 24, 24, 7, 7, 168, 25/2 21, 13, 13, 11, 192, 65/6 25, 15, 15, 7, 192, 25/2 24, 20, 15, 7, 234, 25/2
Programs
-
Mathematica
SMax=1200; Do[ x=S^2/(u v w); If[u+v+w+x//OddQ,Continue[]]; If[v+w+x<=u,Continue[]]; {a,b,c,d}=(u+v+w+x)/2-{x,w,v,u}; If[GCD[a,b,c,d]>1,Continue[]]; R=(Sqrt[v w+u x]Sqrt[u w+v x]Sqrt[u v+w x])/(4S); If[R\[NotElement]Rationals,Continue[]]; S(*{a,b,c,d,"",S,R,"",(4S R)/(a d+b c),(4S R)/(a c+b d),(4S R)/(a b+c d)}*)//Sow; ,{S,1(*6*),SMax,1(*6*)}(*assuming S mod 6 = 0, set to 6 to run faster*) ,{u,S^2//Divisors//Select[#,S<=#^2&<=S&]&} ,{v,S^2/u//Divisors//Select[#,S^2<=u#^3&&u/3<#<=u&]&} ,{w,S^2/(u v)//Divisors//Select[#,S^2<=u v#^2&&(u-v)/2<#<=v&]&} ]//Reap//Last//Last(*//TableForm*) {S,R,x,a,b,c,d}=.;
Comments