cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273692 a(n) is the denominator of 2*O(n+1) - O(n+2) where O(n) = n/2^n, the n-th Oresme number.

Original entry on oeis.org

2, 8, 2, 32, 32, 128, 64, 512, 512, 2048, 128, 8192, 8192, 32768, 16384, 131072, 131072, 524288, 131072, 2097152, 2097152, 8388608, 4194304, 33554432, 33554432, 134217728, 16777216, 536870912, 536870912, 2147483648, 1073741824, 8589934592, 8589934592, 34359738368
Offset: 0

Views

Author

Paul Curtz, May 28 2016

Keywords

Comments

O(n) is the Horadam notation.
O(n) or Oresme(n) = n/2^n = 0, 1/2, 1/2, 3/8, 1/4, ... . The positive Oresme numbers are O(n+1) = A000265(n+1)/A075101(n+1). See A209308. Consider Oco(n) = 2*O(n+1) - O(n+2) = 1/2, 5/8, 1/2, 11/32, 7/32, ... = A075677(n+1)/a(n). (See Coll(n) in A209308.)
Oco(n) = 1/2, 5/8, 1/2, 11/32, 7/32, 17/128, 5/64, 23/512, 13/512, 29/2048, 1/128, 35/8192, 19/8192, ... . Compare to (2+3*n)/2^(n+2).
Differences table of Oco(n):
1/2, 5/8, 1/2, 11/32, 7/32, 17/128, 5/64, ...
1/8, -1/8, -5/32, -1/8, -11/128, -7/128, ...
-1/4, -1/32, 1/32, 5/128, 1/32, ...
7/32, 1/16, 1/128, -1/128, ...
-5/32, -7/128, -1/64, ...
13/128, 5/128, ...
-1/16, ... .
First column: Io(n) = 1/2 followed by (-1)^n* A067745(n)/(8, 4, 32, 32, ...).
1) Alternated Oco(2n) + Io(2n) and Oco(2n+1) - Io(2n+1) gives 2^n.
2) Alternated Oco(2n) - Io(2n) and Oco(2n+1) + Io(2n+1) gives 3*O(n)/2.
(1/2 - 1/2 = 0, 5/8 + 1/8 = 3/4, 1/2 + 1/4 = 3/4, 11/32 + 7/32 = 9/16, ...)

References

  • M. R. Bacon and C. K. Cook, Some properties of Oresme numbers and convolutions ..., Fib. Q., 62:3 (2024), 233-240.

Crossrefs

Programs

  • PARI
    Or(n) = n/2^n;
    a(n) = denominator(2*Or(n+1) - Or(n+2)); \\ Michel Marcus, May 28 2016

Formula

a(n) = denominator of (2+3*n)/2^(n+2).
a(2n+1) = 8*4^n.
a(2n+2) = a(2n+1)/(4, 1, 2, 1, 16, 1, 2, 1, 4, 1, 2, 1, 8, 1, ..., shifted A006519?).

Extensions

More terms from Michel Marcus, May 28 2016