A273692 a(n) is the denominator of 2*O(n+1) - O(n+2) where O(n) = n/2^n, the n-th Oresme number.
2, 8, 2, 32, 32, 128, 64, 512, 512, 2048, 128, 8192, 8192, 32768, 16384, 131072, 131072, 524288, 131072, 2097152, 2097152, 8388608, 4194304, 33554432, 33554432, 134217728, 16777216, 536870912, 536870912, 2147483648, 1073741824, 8589934592, 8589934592, 34359738368
Offset: 0
References
- M. R. Bacon and C. K. Cook, Some properties of Oresme numbers and convolutions ..., Fib. Q., 62:3 (2024), 233-240.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..3320
- A. F. Horadam, Oresme numbers, Fib. Quart., 12 (1974), 267-271.
Crossrefs
Programs
-
PARI
Or(n) = n/2^n; a(n) = denominator(2*Or(n+1) - Or(n+2)); \\ Michel Marcus, May 28 2016
Formula
a(n) = denominator of (2+3*n)/2^(n+2).
a(2n+1) = 8*4^n.
a(2n+2) = a(2n+1)/(4, 1, 2, 1, 16, 1, 2, 1, 4, 1, 2, 1, 8, 1, ..., shifted A006519?).
Extensions
More terms from Michel Marcus, May 28 2016
Comments