cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273717 Triangle read by rows: T(n,k) is the number of bargraphs of semiperimeter n having k L-shaped corners (n>=2, k>=0).

Original entry on oeis.org

1, 2, 4, 1, 8, 5, 16, 18, 1, 32, 56, 9, 64, 160, 50, 1, 128, 432, 220, 14, 256, 1120, 840, 110, 1, 512, 2816, 2912, 645, 20, 1024, 6912, 9408, 3150, 210, 1, 2048, 16640, 28800, 13552, 1575, 27, 4096, 39424, 84480, 53088, 9534, 364, 1, 8192, 92160, 239360, 193440, 49644, 3388, 35, 16384, 212992, 658944, 665280, 231000, 24822, 588
Offset: 2

Views

Author

Emeric Deutsch, May 29 2016

Keywords

Comments

Each L-shaped corner can be viewed as a descent (as defined in Sec. 5.1 of the Blecher et al. reference). - Emeric Deutsch, Jul 02 2016

Examples

			Row 4 is 4,1 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1], [1,2], [2,1], [2,2], [3] of which only [2,1] yields a |_ - shaped corner.
Triangle starts:
  1;
  2;
  4,1;
  8,5;
  16,18,1.
		

References

  • A. Blecher, C. Brennan, and A. Knopfmacher, Combinatorial parameters in bargraphs (preprint).

Crossrefs

Sum of entries in row n = A082582(n).

Programs

  • Maple
    eq := t*z*G^2-(1-2*z-t*z^2)*G+z^2 = 0: G := RootOf(eq, G): Gser := simplify(series(G, z = 0, 22)): for n from 2 to 18 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 2 to 18 do seq(coeff(P[n], t, j), j = 0 .. degree(P[n])) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, y, t) option remember; expand(
          `if`(n=0, (1-t), `if`(t<0, 0, b(n-1, y+1, 1))+
          `if`(t>0 or y<2, 0, b(n, y-1, -1))+
          `if`(y<1, 0, b(n-1, y, 0)*`if`(t<0, z, 1))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(n, 0$2)):
    seq(T(n), n=2..18);  # Alois P. Heinz, Jun 06 2016
  • Mathematica
    b[n_, y_, t_] := b[n, y, t] = Expand[If[n == 0, 1 - t, If[t < 0, 0, b[n - 1, y + 1, 1]] + If[t > 0 || y < 2, 0, b[n, y - 1, -1]] + If[y < 1, 0, b[n - 1, y, 0]*If[t < 0, z, 1]]]]; T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[n, 0, 0]]; Table[T[n], {n, 2, 18}] // Flatten (* Jean-François Alcover, Dec 02 2016 after Alois P. Heinz *)

Formula

G.f.: G = G(t,z) satisfies t*z*G^2 - (1 - 2*z - t*z^2)*G + z^2 = 0.
Sum_{k>=1} k*T(n,k) = A273718(n).
T(n,0) = 2^(n-2).
T(n,1) = n*(n-3)*2^(n-6) = A001793(n-3) for n>=4.