cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A273718 The number of L-shaped corners in all bargraphs of semiperimeter n.

Original entry on oeis.org

0, 0, 1, 5, 20, 74, 263, 914, 3134, 10655, 36023, 121331, 407610, 1366926, 4578365, 15321750, 51245820, 171335458, 572714527, 1914159445, 6397373996, 21381342737, 71465609723, 238892470728, 798659461590, 2670437231049, 8930385538663, 29869572490093, 99922049387230, 334324916304050
Offset: 2

Views

Author

Emeric Deutsch, May 29 2016

Keywords

Comments

The total number of descents in all bargraphs of semiperimeter n>=2. - Arnold Knopfmacher, Nov 02 2016

Examples

			a(4)=1 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1], [1,2], [2,1], [2,2], [3] of which only [2,1] yields a |_ -shaped corner.
		

Crossrefs

Programs

  • Maple
    Q := sqrt(1-4*z+2*z^2+z^4): g := ((1-4*z+3*z^2+2*z*Q-Q)*(1/2))/(z*Q): gser := series(g, z = 0,40): seq(coeff(gser, z, n), n = 2 .. 35);
  • Mathematica
    f[x_] := Sqrt[1 - 4*x + 2*x^2 + x^4]; CoefficientList[Series[(1 - 4*x + 3*x^2 + 2*f[x] - f[x])/(2*x*f[x]), {x, 2, 50}], x] (* G. C. Greubel, May 29 2016 *)

Formula

G.f.: g(z) = (1 - 4z + 3z^2 +2Q - Q)/(2zQ), where Q = sqrt(1-4z+2z^2+z^4).
a(n) = Sum(k*A273717(n,k), k>=0).
D-finite with recurrence (n+1)*a(n) +(-7*n+2)*a(n-1) +2*(7*n-12)*a(n-2) +2*(-3*n+10)*a(n-3) +(n+1)*a(n-4) +3*(-n+4)*a(n-5)=0. - R. J. Mathar, May 30 2016
Showing 1-1 of 1 results.