A273752 Integer area of primitive bicentric quadrilateral with integer side, rational inradius and rational circumradius. Excluding right kites.
7140, 16380, 87780, 1543668, 1697892, 4444440, 5858580
Offset: 1
Examples
All examples with S < 10^7: a, b, c, d, S, R, r 204, 140, 85, 21, 7140, 442, 476/15 315, 260, 91, 36, 16380, 650, 140/3 440, 399, 231, 190, 87780, 1885/2, 418/3 2397, 1564, 1316, 483, 1543668, 4810, 128639/240 4756, 3451, 1428, 123, 1697892, 15130, 348 2849, 2184, 2145, 1480, 4444440, 6290, 3080/3 5460, 5365, 1131, 1036, 5858580, 11050, 7215/8
Links
- Wikipedia, Bicentric quadrilateral.
- Wikipedia, Fermat's right triangle theorem.
Programs
-
Mathematica
SMin=7140; SMax=16380(*WARNING: runs very slow*); dS=1(*assuming S mod 84 = 0, set to 84 to run faster*); Do[ s=(a+b)/2+Sqrt[(a-b)^2/4+S^2/(a b)]; If[s//IntegerQ//Not,Continue[]]; If[GCD[a,b,s]>1,Continue[]]; R=(Sqrt[#1#2+#3#4]Sqrt[#1#3+#2#4]Sqrt[#1#4+#2#3])/S&[a,b,s-b,s-a]; If[R\[NotElement]Rationals,Continue[]]; S(*{a,b,s-b,s-a,S,R,S/s}*)//Sow; ,{S,Round[SMin,dS],SMax,dS} ,{a,S^2//Divisors//Select[#,S<#^2&
Comments