A273845 Expansion of Product_{n>=1} (1 - x^(3*n))/(1 - x^n)^3 in powers of x.
1, 3, 9, 21, 48, 99, 198, 375, 693, 1236, 2160, 3681, 6168, 10140, 16434, 26235, 41376, 64449, 99342, 151530, 229032, 343068, 509760, 751509, 1099998, 1598925, 2309274, 3314541, 4729920, 6711993, 9474624, 13306506, 18598437, 25874460, 35838288, 49427640, 67892592
Offset: 0
Keywords
Examples
G.f.: 1 + 3*x + 9*x^2 + 21*x^3 + 48*x^4 + 99*x^5 + 198*x^6 + ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, q-Pochhammer Symbol
Crossrefs
Programs
-
Mathematica
nmax = 50; CoefficientList[Series[Product[(1 - x^(3*k))/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2016 *) (QPochhammer[x^3, x^3]/QPochhammer[x, x]^3 + O[x]^40)[[3]] (* Vladimir Reshetnikov, Nov 20 2016 *)
-
PARI
first(n)=my(x='x); Vec(prod(k=1, n, (1-x^(3*k))/(1-x^k)^3, 1+O(x^(n+1)))) \\ Charles R Greathouse IV, Nov 07 2016
-
PARI
lista(nn) = {q='q+O('q^nn); Vec(eta(q^3)/eta(q)^3)} \\ Altug Alkan, Mar 20 2018
Formula
G.f.: Product_{n>=1} (1 - x^(3*n))/(1 - x^n)^3.
a(n) ~ exp(4*Pi*sqrt(n)/3) / (9*sqrt(2)*n^(5/4)). - Vaclav Kotesovec, Nov 10 2016
G.f.: (x^3; x^3)inf/((x; x)_inf)^3, where (a; q)_inf is the q-Pochhammer symbol. - _Vladimir Reshetnikov, Nov 20 2016
a(0) = 1, a(n) = (3/n)*Sum_{k=1..n} A078708(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 29 2017
It appears that the g.f. A(x) = F(x)^3, where F(x) = exp( Sum_{n >= 0} x^(3*n+1)/((3*n + 1)*(1 - x^(3*n+1))) + x^(3*n+2)/((3*n + 2)*(1 - x^(3*n + 2))) ). Cf. A132972. - Peter Bala, Dec 23 2021