cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273866 Coefficients a(k,m) of polynomials a{k}(h) appearing in the product Product_{k >= 1} (1 - a{k}(h)*x^k) = 1 - h*x/(1-x).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1, 3, 5, 5, 3, 1, 1, 3, 6, 7, 6, 3, 1, 1, 4, 9, 13, 13, 9, 4, 1, 1, 4, 10, 17, 20, 17, 10, 4, 1, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 1, 5, 16, 36, 57, 66, 57, 36, 16, 5, 1
Offset: 1

Views

Author

Gevorg Hmayakyan, Jun 01 2016

Keywords

Comments

The a(k,m) form a table where each row has k-1 elements starting from 2 and the a(1,1) = 1.

Examples

			a{1}(h) = h,
a{2}(h) = h,
a{3}(h) = h^2 + h,
a{4}(h) = h^3 + h^2 + h,
a{5}(h) = h^4 + 2*h^3 + 2*h^2 + h,
a{6}(h) = h^5 + 2*h^4 + 2*h^3 + 2*h^2 + h,
a{7}(h) = h^6 + 3*h^5 + 5*h^4 + 5*h^3 + 3*h^2 + h,
a{8}(h) = h^7 + 3*h^6 + 6*h^5 + 7*h^4 + 6*h^3 + 3*h^2 + h,
a{9}(h) = h^8 + 4*h^7 + 9*h^6 + 13*h^5 + 13*h^4 + 9*h^3 + 4*h^2 + h
...
and the corresponding a(k,m) table is:
  1,
  1,
  1,  1,
  1,  1,  1,
  1,  2,  2,  1,
  1,  2,  2,  2,  1,
  1,  3,  5,  5,  3,  1,
  1,  3,  6,  7,  6,  3,  1,
  1,  4,  9, 13, 13,  9,  4,  1,
  ...
a(7,3) = 5 because there are six strict trees contributing positive one {{5,1},1}, {{4,2},1}, {{4,1},2}, {{3,2},2}, {4,{2,1}}, {{3,1},3} and there is one strict tree contributing negative one {4,2,1}. - _Gus Wiseman_, Nov 14 2016
		

Crossrefs

Programs

  • Maple
    with(ListTools), with(numtheory), with(combinat);
    L := product(1-a[k]*x^k, k = 1 .. 600);
    S := Flatten([seq(-h, i = 1 .. 100)]);
    Sabs := Flatten([seq(i, i = 1 .. 100)]);
    seq(assign(a[i] = solve(coeff(L, x^i) = `if`(is(i in Sabs), S[Search(i, Sabs)], 0), a[i])), i = 1 .. 20);
    map(coeffs, [seq(simplify(a[i]), i = 1 .. 20)]);
  • Mathematica
    strictrees[n_Integer?Positive]:=Prepend[Join@@Function[ptn,Tuples[strictrees/@ptn]]/@Select[IntegerPartitions[n],And[Length[#]>1,UnsameQ@@#]&],n];
    Table[Sum[(-1)^(Count[tree,,{0,Infinity}]-1),{tree,Select[strictrees[n],Length[Flatten[{#}]]===m&]}],{n,1,9},{m,1,n-1/.(0->1)}] (* _Gus Wiseman, Nov 14 2016 *)
    (* second program *)
    A[m_, n_] :=
      A[m, n] =
       Which[m == 1, -h, m > n >= 1, 0, True,
        A[m - 1, n] - A[m - 1, m - 1]*A[m, n - m + 1]];
    a[n_] := Expand[-A[n, n]];
    a /@ Range[1, 25] (* Petros Hadjicostas, Oct 04 2019, courtesy of Jean-François Alcover *)

Formula

a(k,m) = a(k, k-m).
For prime p: Sum_{m = 1..p-1} a(p, m) = (2^p - 2)/p.
a{k}(h) satisfies Sum_{d|k} (1/d)*(a{k/d}(h))^d = ((h+1)^k - 1)/k. [Corrected by Petros Hadjicostas, Oct 04 2019]
For prime p: a{p}(h) = ((h+1)^p - h^p - 1)/p.
See A273873 for the definition of strict tree. Then a(n,m) = Sum_t (-1)^{v(t)-1} where the sum is over all strict trees of weight n with m leaves, and v(t) is the number of nodes in t (including the leaves, which are positive integers). See example 2 and the first Mathematica program. - Gus Wiseman, Nov 14 2016