A273890 Integer area A of the cyclic quadrilaterals such that A, the sides and the two diagonals are integers.
192, 234, 300, 432, 714, 768, 936, 1134, 1200, 1254, 1344, 1674, 1728, 1764, 1890, 1938, 2046, 2106, 2226, 2310, 2352, 2700, 2856, 2886, 3072, 3120, 3234, 3744, 3888, 3990, 4092, 4212, 4368, 4536, 4674, 4800, 4914, 5016, 5292, 5376, 5760, 5850, 6006, 6270, 6426
Offset: 1
Keywords
Examples
192 is in the sequence because, for (a,b,c,d) = (7,15,15,25) we find: s = (7+15+15+25)/2 = 31; A = sqrt((31-7)(31-15)(31-15)(31-25)) = 192; p = sqrt((7*15+15*25)*(7*25+15*15)/(7*15+15*25)) = 20; q = sqrt((7*15+15*25)*(7*15+15*25)/(7*25+15*15)) = 24.
Links
- Eric Weisstein's World of Mathematics, Cyclic Quadrilateral
Programs
-
Mathematica
nn=200; lst={}; Do[s=(a+b+c+d)/2; If[IntegerQ[s], area2=(s-a)*(s-b)*(s-c)*(s-d); d1=Sqrt[(a*c+b*d)*(a*d+b*c)/(a*b+c*d)];d2=Sqrt[(a*c+b*d)*(a*b+c*d)/(a*d+b*c)];If[0
Comments