cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273898 Sum of the abscissae of the first descents of all bargraphs of semiperimeter n (n>=2).

Original entry on oeis.org

1, 3, 9, 27, 81, 244, 739, 2251, 6895, 21232, 65703, 204245, 637573, 1997892, 6282635, 19820580, 62716923, 198997349, 633015543, 2018391204, 6449819095, 20652628601, 66256638509, 212939343591, 685497649231, 2210217592624, 7136781993563, 23076554161563
Offset: 2

Views

Author

Emeric Deutsch, Jun 06 2016

Keywords

Comments

A descent in a bargraph is a maximal sequence of adjacent down steps.

Examples

			a(4)=9 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1],[1,2],[2,1],[2,2],[3] and the corresponding pictures give the values 3,2,1,2,1 for the abscissae of their first descents.
		

Crossrefs

Programs

  • Maple
    g := ((1-4*z+3*z^2-(1-2*z)*Q)*(1/2))/z^3: Q := sqrt(1-4*z+2*z^2+z^4): gser := series(g,z = 0,40): seq(coeff(gser, z, n), n = 2 .. 35);
    # second Maple program:
    a:= proc(n) option remember; `if`(n<4, [0$2, 1, 3][n+1],
         ((2*(14*n^2+6+13*n))*a(n-1)-(2*(7*n^2-6-4*n))*a(n-2)
         +12*a(n-3) -(n-4)*(3+7*n)*a(n-4))/((n+3)*(7*n-4)))
        end:
    seq(a(n), n=2..40);  # Alois P. Heinz, Jun 07 2016
  • Mathematica
    a[n_] := a[n] = If[n<4, {0, 0, 1, 3}[[n+1]], ((2*(14*n^2+6+13*n))*a[n-1] - (2*(7*n^2-6-4*n))*a[n-2] + 12*a[n-3] - (n-4)*(3+7*n)*a[n-4])/((n+3)*(7*n - 4))]; Table[a[n], {n, 2, 40}] (* Jean-François Alcover, Dec 02 2016 after Alois P. Heinz *)

Formula

G.f.: g(z)=(1-4z+3z^2-(1-2z)Q)/(2z^3), where Q = sqrt(1-4z+2z^2+z^4).
a(n) = Sum(k*A273897(n,k), k>=1).
a(n) = A082582(n+2)-2*A082582(n+1).
D-finite with recurrence (n+3)*a(n) +2*(-3*n-4)*a(n-1) +2*(5*n-2)*a(n-2) +4*(-n+2)*a(n-3) +(n-3)*a(n-4) +2*(-n+5)*a(n-5)=0. - R. J. Mathar, Jul 24 2022