A273906 Primes equal to the concatenation of two nonzero palindromic numbers.
11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 113, 199, 211, 223, 227, 229, 233, 277, 311, 331, 337, 433, 443, 449, 499, 557, 577, 599, 661, 677, 733, 773, 811, 877, 881, 883, 887, 911, 977, 991, 997, 1013, 1019, 1117, 1151, 1171, 1181
Offset: 1
Examples
The prime 1013 is a term since 101 and 3 are palindromic. The prime 101 is not a term, since it is not a concatenation of two nonzero palindromic numbers. The prime 131 is not a term because it is not a concatenation of two nonzero palindromic numbers.
Links
- David A. Corneth, Table of n, a(n) for n = 1..25912
- David A. Corneth, PARI program
Programs
-
Mathematica
Take[#, 62] &@ Select[Sort@ Map[FromDigits@ Flatten@ IntegerDigits@ # &, Tuples[#, 2]], PrimeQ] &@ Select[Range[10^3], Reverse@ # == # &@ IntegerDigits@ # &] (* Michael De Vlieger, Jun 03 2016 *) nxtPal[n_]:=With[{c=Join[{2},Flatten[Table[{10*10^d,11*10^d},{d,0,10}]]]},SelectFirst[n+c,PalindromeQ]]; Take[Join[{11},Select[ #[[1]]*10^IntegerLength[ #[[2]]]+#[[2]]&/@ Flatten[{#,Reverse[#]}&/@Subsets[Join[Range[8],NestList[nxtPal,9,100]],{2}],1],PrimeQ]//Union],60] (* Harvey P. Dale, Dec 08 2024 *)
-
PARI
\\ See program link from David A. Corneth, Jun 10 2016.
Formula
a(n) = A096489(n+1), n=1..21. - R. J. Mathar, Jun 12 2016. (This is a pure accident, I think, since A096489 is a finite sequence. - N. J. A. Sloane, Jun 12 2016)
Extensions
More terms from Michael De Vlieger, Jun 03 2016
Comments