cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A275046 Number of binary strings with n zeros and n ones avoiding the substrings 10101101 and 1110101.

Original entry on oeis.org

1, 2, 6, 20, 70, 245, 874, 3164, 11577, 42694, 158431, 590873, 2212797, 8315535, 31341163, 118423810, 448455754, 1701534151, 6467049185, 24617030774, 93834205107, 358116770601, 1368283768753, 5233261657558, 20034371696497, 76763164565117, 294357181436313, 1129575035419485
Offset: 0

Views

Author

Gheorghe Coserea, Jul 17 2016

Keywords

Comments

Numerical experiment gives a(n) ~ k * r^n/sqrt(n*Pi) * (1 + O(1/n)), where k=1.06869393488382855... and r=3.91019320429177568...(the largest positive real root of P(x) = 4*x^20 - 20*x^19 + 8*x^18 + 75*x^17 - 233*x^16 + 368*x^15 - 286*x^14 + 154*x^13 + 66*x^12 - 203*x^11 + x^10 - 56*x^9 - 182*x^8 - 11*x^7 - 43*x^6 + 26*x^5 + 62*x^4 + 63*x^3 + 23*x^2 - 8*x - 4). - Gheorghe Coserea, Jun 28 2018

Examples

			For n = 5 there are binomial(10,5) = 252 binary strings with 5 zeros and 5 ones; seven out of this 252 binary strings contain as substrings w1=10101101 or w2=1110101, i.e.
   0123456789
   ----------
1  0001110101 contains w2 at offset 3
2  0010101101 contains w1 at offset 2
3  0011101010 contains w2 at offset 2
4  0101011010 contains w1 at offset 1
5  0111010100 contains w2 at offset 1
6  1010110100 contains w1 at offset 0
7  1110101000 contains w2 at offset 0
Therefore a(5) = 252 - 7 = 245.
		

Crossrefs

Main diagonal of A273914.

Programs

  • Mathematica
    a[n_] := SeriesCoefficient[(1 + x^2 y^3 + x^2 y^4 + x^3 y^4 - x^3 y^6) / (1 - x - y + x^2 y^3 - x^3 y^3 - x^4 y^4 - x^3 y^6 + x^4 y^6), {x, 0, n}, {y, 0, n}]; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Aug 20 2018 *)
  • PARI
    r1 = (1+x^2*y^3+x^2*y^4+x^3*y^4-x^3*y^6);
    r2 = (1-x-y+x^2*y^3-x^3*y^3-x^4*y^4-x^3*y^6+x^4*y^6);
    diag(expr, N=22, var=variables(expr)) = {
      my(a = vector(N));
      for (k = 1, #var, expr = taylor(expr, var[#var - k + 1], N));
      for (n = 1, N, a[n] = expr;
        for (k = 1, #var, a[n] = polcoeff(a[n], n-1)));
      return(a);
    };
    diag(r1/r2, 28)
    F  = (x + 1)*(4*x^20 + 8*x^19 - 23*x^18 - 63*x^17 - 62*x^16 - 26*x^15 + 43*x^14 + 11*x^13 + 182*x^12 + 56*x^11 - x^10 + 203*x^9 - 66*x^8 - 154*x^7 + 286*x^6 - 368*x^5 + 233*x^4 - 75*x^3 - 8*x^2 + 20*x - 4)*(y^4 - y^3)  - (12*x^17 + 48*x^16 + 72*x^15 + 49*x^14 - 23*x^13 - 57*x^12 - 91*x^11 - 137*x^10 - 84*x^9 - 34*x^8 - 91*x^7 + 62*x^6 + 24*x^5 - 34*x^4 + 41*x^3 - 10*x^2 - 3*x - 3)*y^2 + (x^15 + 4*x^14 + 6*x^13 + 3*x^12 - 6*x^11 - 11*x^10 - 11*x^9 - 8*x^8 - 3*x^7 + 12*x^6 + 11*x^4 + 5*x^3 - 6*x^2 - 4)*y - x^4 + x + 1;
    \\ test: y = Ser(diag(r1/r2, 100)); 0 == subst(F, 'y, y)
    
  • PARI
    x='x; y='y; t='t;
    seq(N) = {
      my(Fx = substvec(F, [x, y], [t, x]), y0 = 1 + O('t^N), y1=0, n=1);
      while (n++,
        y1 = y0 - subst(Fx, 'x, y0)/subst(deriv(Fx, 'x), 'x, y0);
        if (y1 == y0, break()); y0 = y1); Vec(y0);
    };
    seq(28)
    \\ Gheorghe Coserea, Jul 18 2018

Formula

a(n) = [x^n y^n] (1+x^2*y^3+x^2*y^4+x^3*y^4-x^3*y^6) / (1-x-y+x^2*y^3 -x^3*y^3-x^4*y^4-x^3*y^6+x^4*y^6).
From Gheorghe Coserea, Jul 17 2018: (Start)
G.f. y=A(x) satisfies:
0 = (x + 1)*(4*x^20 + 8*x^19 - 23*x^18 - 63*x^17 - 62*x^16 - 26*x^15 + 43*x^14 + 11*x^13 + 182*x^12 + 56*x^11 - x^10 + 203*x^9 - 66*x^8 - 154*x^7 + 286*x^6 - 368*x^5 + 233*x^4 - 75*x^3 - 8*x^2 + 20*x - 4)*(y^4 - y^3) - (12*x^17 + 48*x^16 + 72*x^15 + 49*x^14 - 23*x^13 - 57*x^12 - 91*x^11 - 137*x^10 - 84*x^9 - 34*x^8 - 91*x^7 + 62*x^6 + 24*x^5 - 34*x^4 + 41*x^3 - 10*x^2 - 3*x - 3)*y^2 + (x^15 + 4*x^14 + 6*x^13 + 3*x^12 - 6*x^11 - 11*x^10 - 11*x^9 - 8*x^8 - 3*x^7 + 12*x^6 + 11*x^4 + 5*x^3 - 6*x^2 - 4)*y - x^4 + x + 1.
0 = x*(x + 1)*(4*x^20 + 8*x^19 - 23*x^18 - 63*x^17 - 62*x^16 - 26*x^15 + 43*x^14 + 11*x^13 + 182*x^12 + 56*x^11 - x^10 + 203*x^9 - 66*x^8 - 154*x^7 + 286*x^6 - 368*x^5 + 233*x^4 - 75*x^3 - 8*x^2 + 20*x - 4)*(118272*x^52 + 831744*x^51 + 1055904*x^50 - 7689296*x^49 - 38498448*x^48 - 80707744*x^47 - 72043786*x^46 + 66740441*x^45 + 346144275*x^44 + 625268594*x^43 + 589350508*x^42 + 17945175*x^41 - 884101205*x^40 - 1544594497*x^39 - 1347124444*x^38 - 211988089*x^37 + 1025901619*x^36 + 1241901364*x^35 + 616097420*x^34 - 78145486*x^33 - 99242286*x^32 + 531374412*x^31 + 906579073*x^30 + 469457541*x^29 - 557671181*x^28 - 782936093*x^27 - 717539334*x^26 - 40136982*x^25 + 457839043*x^24 - 311428424*x^23 + 3826606*x^22 - 491844856*x^21 - 133463183*x^20 - 60176593*x^19 + 144471284*x^18 - 190012265*x^17 + 85787300*x^16 - 80535081*x^15 + 8793691*x^14 + 10578217*x^13 - 9656310*x^12 + 18022318*x^11 - 26135422*x^10 + 12930260*x^9 - 3354132*x^8 + 541884*x^7 - 9616*x^6 - 57280*x^5 - 9208*x^4 + 9112*x^3 - 1040*x^2 - 280*x + 16)*y'''' + 4*(2838528*x^73 + 28067328*x^72 + 73561152*x^71 - 226808640*x^70 - 1991541264*x^69 - 5248168208*x^68 - 3107619252*x^67 + 20424566388*x^66 + 73353344501*x^65 + 120803944377*x^64 + 68101961985*x^63 - 186797665046*x^62 - 613175796828*x^61 - 923231475195*x^60 - 665765362797*x^59 + 399661471464*x^58 + 1879241350220*x^57 + 2725977199294*x^56 + 1953611739558*x^55 - 308344618572*x^54 - 2604282130026*x^53 - 3293902915065*x^52 - 2023915430978*x^51 - 99057127476*x^50 + 858463211952*x^49 + 317189348208*x^48 - 644601194734*x^47 - 507510602088*x^46 + 879140815897*x^45 + 2316302607265*x^44 + 2466044252703*x^43 + 1507845363339*x^42 - 37352834097*x^41 - 866197857474*x^40 - 550136559577*x^39 - 371957632883*x^38 + 280554188916*x^37 - 169839318847*x^36 - 548085762481*x^35 - 394885238292*x^34 - 961508690348*x^33 - 558871954052*x^32 - 268597349319*x^31 - 396264718574*x^30 - 54570409485*x^29 - 29474141703*x^28 + 54798043451*x^27 - 225168685420*x^26 + 219869326332*x^25 - 211388212265*x^24 + 121755651738*x^23 - 44532380475*x^22 + 41810572525*x^21 - 13020873945*x^20 - 34502727399*x^19 + 51399098138*x^18 - 37480914194*x^17 + 16266551868*x^16 + 4802405683*x^15 - 11015782402*x^14 + 6973213149*x^13 - 2867107486*x^12 + 1145934309*x^11 - 396485541*x^10 + 91079094*x^9 - 20790910*x^8 + 9018972*x^7 - 2729266*x^6 + 15970*x^5 + 152280*x^4 - 23540*x^3 - 4624*x^2 + 804*x - 40)*y''' + 12*(5913600*x^72 + 58552320*x^71 + 162198720*x^70 - 399479776*x^69 - 4024065824*x^68 - 11894928752*x^67 - 13359252044*x^66 + 19743062838*x^65 + 106170302098*x^64 + 196850199947*x^63 + 139990047211*x^62 - 242428556815*x^61 - 914440223127*x^60 - 1404267023705*x^59 - 981820207169*x^58 + 692860011210*x^57 + 2881981766799*x^56 + 3780666319153*x^55 + 1931509675560*x^54 - 1789113064830*x^53 - 4353254267040*x^52 - 3421680202122*x^51 + 86944304476*x^50 + 2529905700017*x^49 + 1255075892612*x^48 - 2347804140484*x^47 - 4006195397861*x^46 - 1459374421865*x^45 + 3708726044890*x^44 + 6578458317742*x^43 + 3981711739329*x^42 - 545975266760*x^41 - 3735058603101*x^40 - 2830413868772*x^39 + 496621169935*x^38 + 2215361366242*x^37 + 2664777396382*x^36 - 126126929968*x^35 - 1185628295801*x^34 - 1766130985147*x^33 - 1321402227308*x^32 - 554605775048*x^31 - 314472036802*x^30 - 124742883035*x^29 - 779639894108*x^28 - 187973020632*x^27 - 436320637251*x^26 - 110965040480*x^25 + 89434870246*x^24 - 59962248938*x^23 + 40664295470*x^22 - 159086840234*x^21 + 87274292183*x^20 - 64615348620*x^19 - 3906157152*x^18 + 42872210460*x^17 - 39037582211*x^16 + 17857634133*x^15 - 4859881314*x^14 + 1719235532*x^13 - 1220377579*x^12 + 826395920*x^11 - 452538461*x^10 + 276451285*x^9 - 77896966*x^8 - 7819744*x^7 + 11091416*x^6 - 2392952*x^5 + 84092*x^4 + 78168*x^3 - 13628*x^2 + 204*x - 40)*y'' + 24*(4730880*x^71 + 47278080*x^70 + 138487680*x^69 - 273327872*x^68 - 3224196672*x^67 - 10522840368*x^66 - 15683954824*x^65 + 2837440368*x^64 + 66783160692*x^63 + 157076042559*x^62 + 176460709731*x^61 - 20753120619*x^60 - 468777180135*x^59 - 901436210799*x^58 - 814713584628*x^57 + 118253282806*x^56 + 1519823466913*x^55 + 2171886524422*x^54 + 984539467703*x^53 - 1380275010648*x^52 - 2578554053427*x^51 - 1051193690751*x^50 + 1862189159015*x^49 + 2884190942011*x^48 + 178354766658*x^47 - 3671225244807*x^46 - 4179646483007*x^45 - 425026505279*x^44 + 4749349227024*x^43 + 5804031914804*x^42 + 1249983354384*x^41 - 3642913361190*x^40 - 5112487295002*x^39 - 1641304278133*x^38 + 2938886288909*x^37 + 4069038198838*x^36 + 1830779914789*x^35 - 1798238310417*x^34 - 1495907299753*x^33 - 1094364204315*x^32 + 807417393365*x^31 - 72154916922*x^30 - 8536980308*x^29 - 794452219816*x^28 - 509673251372*x^27 + 190937602442*x^26 - 234838593532*x^25 + 251283672141*x^24 - 379193047029*x^23 + 161017205569*x^22 - 113347214785*x^21 + 45981090690*x^20 - 22904707029*x^19 - 8687260383*x^18 - 31879707878*x^17 + 37099647203*x^16 - 21102826093*x^15 + 7822806180*x^14 - 6568577261*x^13 + 4330232930*x^12 - 2387982620*x^11 + 1109490464*x^10 - 512581326*x^9 + 162799386*x^8 - 23098368*x^7 - 6139110*x^6 + 3208022*x^5 - 413396*x^4 - 87740*x^3 + 17676*x^2 - 2732*x + 520)*y'.
(End)
Showing 1-1 of 1 results.