cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A273914 Array A by antidiagonals going up: A(n, m) is the number of (0, 1)-strings with n 0's and m 1's that do not contain 10101101 or 1110101 as substrings.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 35, 35, 20, 7, 1, 1, 8, 28, 56, 70, 53, 26, 8, 1, 1, 9, 36, 84, 126, 121, 76, 33, 9, 1, 1, 10, 45, 120, 210, 245, 192, 106, 41, 10, 1, 1, 11, 55, 165, 330, 453, 430, 290, 143, 50, 11, 1
Offset: 0

Views

Author

Michael Somos, Jun 03 2016

Keywords

Examples

			Array begins:
n\m  0  1   2   3    4    5
--+------------------------
0 |  1  1   1   1    1    1
1 |  1  2   3   4    5    6
2 |  1  3   6  10   15   20
3 |  1  4  10  20   35   53
4 |  1  5  15  35   70  121
5 |  1  6  21  56  126  245
		

Crossrefs

Main diagonal gives A275046.

Programs

  • Mathematica
    A[n_, m_] := If[n<0 || m<0, 0, SeriesCoefficient[ SeriesCoefficient[(1 + x^2*y^3 + x^2*y^4 + x^3*y^4 - x^3*y^6)/(1 -x - y + x^2*y^3 - x^3*y^3 - x^4*y^4 - x^3*y^6 + x^4*y^6), {x, 0, n}], {y, 0, m}]];
    Table[A[n-m, m], {n, 0, 11}, {m, 0, n}] // Flatten (* Jean-François Alcover, Aug 20 2018, from PARI *)
  • PARI
    {A(n, m) = if( n<0 || m<0, 0, polcoeff( polcoeff( (1 + x^2*y^3 + x^2*y^4 + x^3*y^4 - x^3*y^6) / (1 - x - y + x^2*y^3 - x^3*y^3 - x^4*y^4 - x^3*y^6 + x^4*y^6) + x * O(x^n), n) + y * O(y^m), m))};

Formula

G.f.: (1 + x^2*y^3 + x^2*y^4 + x^3*y^4 - x^3*y^6) / (1 - x - y + x^2*y^3 - x^3*y^3 - x^4*y^4 - x^3*y^6 + x^4*y^6).
Antidiagonal sums is A062257.
A(n, 3) = A000292(n). A(n, 4) = A000332(n).
Showing 1-1 of 1 results.