cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273925 G.f. satisfies: A( A(x)^2 - A(x)^3 ) = x^2, where A(x) = Sum_{n>=1} a(n)*x^n / 2^A273926(n).

Original entry on oeis.org

1, 1, 3, 3, 175, 41, 4947, 321, 687611, 11403, 25132181, 107305, 1941554203, 2111325, 77643067507, 21427329, 25549683166419, 1782548851, 1073363084982753, 18891311061, 91744420207896017, 406630578535, 3975787925128277349, 4432136534071, 697211573846047770799, 195301983407647, 30867311449650538783337, 2171049926840877, 2756162894749311377078579, 48645967088000101
Offset: 1

Views

Author

Paul D. Hanna, Jun 04 2016

Keywords

Comments

The denominators of the coefficients in the g.f. A(x) are powers of 2 that appear to occur only once.
Both bisections of this sequence appear to be monotonically increasing.
The limit a(n+2)/a(n) appears to exist and is near 6.2...

Examples

			G.f.: A(x) = x + 1/2*x^2 + 3/8*x^3 + 3/4*x^4 + 175/128*x^5 + 41/16*x^6 + 4947/1024*x^7 + 321/32*x^8 + 687611/32768*x^9 + 11403/256*x^10 + 25132181/262144*x^11 + 107305/512*x^12 + 1941554203/4194304*x^13 + 2111325/2048*x^14 + 77643067507/33554432*x^15 + 21427329/4096*x^16 + 25549683166419/2147483648*x^17 + 1782548851/65536*x^18 + 1073363084982753/17179869184*x^19 + 18891311061/131072*x^20 + 91744420207896017/274877906944*x^21 + 406630578535/524288*x^22 + 3975787925128277349/2199023255552*x^23 + 4432136534071/1048576*x^24 +...+ a(n)*x^n/2^A273926(n) +...
such that A( A(x)^2 - A(x)^3 ) = x^2 and A( +sqrt( A(x^2 - x^3) ) ) = x.
RELATED SERIES.
The g.f. is related to the Motzkin numbers by the relation:
A( -sqrt( A(x^2 - x^3) ) ) = -x + x^2 - x^3 + 2*x^4 - 4*x^5 + 9*x^6 - 21*x^7 + 51*x^8 - 127*x^9 + 323*x^10 - 835*x^11 +...+ (-1)^n*A001006(n-2)*x^n +...
which equals (1 - x - sqrt(1 + 2*x - 3*x^2))/2.
Also, we have
A( A(x)^3 - A(x)^2 ) = (1 - x^2 - sqrt(1 + 2*x^2 - 3*x^4))/2.
A relevant series begins:
A(x^2 - x^3) = x^2 - x^3 + 1/2*x^4 - x^5 + 7/8*x^6 - 9/8*x^7 + 15/8*x^8 - 27/8*x^9 + 751/128*x^10 - 1259/128*x^11 + 1087/64*x^12 - 1859/64*x^13 + 51307/1024*x^14 - 88509/1024*x^15 + 153519/1024*x^16 - 271065/1024*x^17 + 15515931/32768*x^18 - 27920307/32768*x^19 + 12582747/8192*x^20 - 22730223/8192*x^21 + 1317324005/262144*x^22 - 2391803575/262144*x^23 + 4354015459/262144*x^24 - 7946645097/262144*x^25 +...
Let B(x) be the series reversion of g.f. A(x), so that A(B(x)) = x,
then B(x) = sqrt( A(x^2 - x^3) ) and begins
sqrt( A(x^2 - x^3) ) = x - 1/2*x^2 + 1/8*x^3 - 7/16*x^4 + 27/128*x^5 - 103/256*x^6 + 629/1024*x^7 - 2535/2048*x^8 + 66835/32768*x^9 - 222155/65536*x^10 + 1517887/262144*x^11 - 5140113/524288*x^12 + 70575503/4194304*x^13 - 241166467/8388608*x^14 + 1663932701/33554432*x^15 - 5878842599/67108864*x^16 + 336833847555/2147483648*x^17 - 1211274078451/4294967296*x^18 + 8710075650043/17179869184*x^19 - 31385188980941/34359738368*x^20 + 453666114969205/274877906944*x^21 - 1644082529689977/549755813888*x^22 + 11949781587586819/2199023255552*x^23 +...
Also, note that A(x)^2 - A(x)^3 = B(x^2) is an even function, where
A(x)^2 = x^2 + x^3 + x^4 + 15/8*x^5 + 29/8*x^6 + 903/128*x^7 + 221/16*x^8 + 29559/1024*x^9 + 7851/128*x^10 + 4320363/32768*x^11 + 73433/256*x^12 + 165702201/262144*x^13 + 1439981/1024*x^14 + 13220447555/4194304*x^15 + 14569809/2048*x^16 + 542234209095/33554432*x^17 +...
A(x)^3 = x^3 + 3/2*x^4 + 15/8*x^5 + 7/2*x^6 + 903/128*x^7 + 57/4*x^8 + 29559/1024*x^9 + 489/8*x^10 + 4320363/32768*x^11 + 1149/4*x^12 + 165702201/262144*x^13 + 179919/128*x^14 + 13220447555/4194304*x^15 + 1821543/256*x^16 + 542234209095/33554432*x^17 +...
The bisections of this sequence begin:
odd bisection: [1, 3, 175, 4947, 687611, 25132181, 1941554203, 77643067507, 25549683166419, 1073363084982753, 91744420207896017, 3975787925128277349, ...];
even bisection: [1, 3, 41, 321, 11403, 107305, 2111325, 21427329, 1782548851, 18891311061, 406630578535, 4432136534071, 195301983407647, 2171049926840877, ...].
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=x); for(i=0,n, A = serreverse( sqrt(subst(A,x,x^2 - x^3 +x^2*O(x^n) )) )); numerator(polcoeff(A,n))}
    for(n=1,30,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n / 2^A273926(n) satisfies:
(1) A( +sqrt( A(x^2 - x^3) ) ) = x.
(2) A( -sqrt( A(x^2 - x^3) ) ) = (1 - x - sqrt(1 + 2*x - 3*x^2))/2.
(3) A( A(x)^3 - A(x)^2 ) = (1 - x^2 - sqrt(1 + 2*x^2 - 3*x^4))/2.