cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273953 E.g.f. satisfies A(x) = Sum_{n>=0} x^n/n! * exp(n/2*x) * A(x)^(n/2).

Original entry on oeis.org

1, 1, 3, 13, 77, 581, 5347, 58213, 732937, 10487737, 168217811, 2990748509, 58397418037, 1242643927357, 28627000014355, 709933328752981, 18859531958840273, 534365880859577777, 16087267158157316323, 512844446937529664173, 17259468942471032848861, 611530055485070740134901, 22755171133646348369448323, 887228501593124485460914373, 36173480392953890421156056665, 1539307965110263598673884269801, 68247672532254821767545000249907
Offset: 0

Views

Author

Paul D. Hanna, Jun 14 2016

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 3*x^2/2! + 13*x^3/3! + 77*x^4/4! + 581*x^5/5! + 5347*x^6/6! + 58213*x^7/7! + 732937*x^8/8! + 10487737*x^9/9! + 168217811*x^10/10! + 2990748509*x^11/11! + 58397418037*x^12/12! +...
such that
A(x) = 1 + x*exp(x/2)*A(x)^(1/2) + x^2/2!*exp(x)*A(x) + x^3/3!*exp(3*x/2)*A(x)^(3/2) + x^4/4!*exp(2*x)*A(x)^2 + x^5/5!*exp(5*x/2)*A(x)^(5/2) + x^6/6!*exp(3*x)*A(x)^3 +...
The logarithm of A(x) begins:
log(A(x)) = x + 2*x^2/2! + 6*x^3/3! + 28*x^4/4! + 180*x^5/5! + 1476*x^6/6! + 14728*x^7/7! + 173216*x^8/8! + 2346480*x^9/9! + 35981200*x^10/10! + 616111056*x^11/11! + 11652662880*x^12/12! +...+ A100526(n)*x^n/n! +...
which equals -2*LambertW(-x*exp(x/2)/2).
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[4*LambertW[-x/2*E^(x/2)]^2 / (x^2*E^x), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jun 23 2016 *)
  • PARI
    {a(n) = my(A=1+x); for(i=1,n, A = sum(m=0,n,x^m/m!*exp(m/2*x +x*O(x^n))*A^(m/2)) ); n!*polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    a(n) = sum(k=0, n, k^(n-k)*(k+2)^(k-1)*binomial(n, k))/2^(n-1); \\ Seiichi Manyama, Feb 11 2023

Formula

E.g.f.: 4*LambertW(-x/2*exp(x/2))^2 / (x^2*exp(x)).
E.g.f.: exp( L(x) ) where L(x) = -2*LambertW(-x*exp(x/2)/2) is the e.g.f. of A100526.
a(n) ~ sqrt(1+LambertW(exp(-1)))*n^(n-1)/(2^(n-1)*exp(n-2)*LambertW(exp(-1))^n). - Vaclav Kotesovec, Jun 23 2016
From Seiichi Manyama, Feb 11 2023: (Start)
E.g.f. satisfies A(x) = exp( x * ( exp(x) * A(x) )^(1/2) ).
a(n) = (1/2^(n-1)) * Sum_{k=0..n} k^(n-k) * (k+2)^(k-1) * binomial(n,k). (End)