A273975 Three-dimensional array written by antidiagonals in k,n: T(k,n,h) with k >= 1, n >= 0, 0 <= h <= n*(k-1) is the coefficient of x^h in the polynomial (1 + x + ... + x^(k-1))^n = ((x^k-1)/(x-1))^n.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 3, 2, 1, 1, 3, 6, 7, 6, 3, 1, 1, 4, 6, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 4, 3, 2, 1, 1, 3, 6, 10, 12, 12, 10, 6, 3, 1, 1, 4, 10
Offset: 1
Examples
For first few k and for first few n, the rows with h = 0..n*(k-1) are given: k=1: 1; 1; 1; 1; 1; ... k=2: 1; 1, 1; 1, 2, 1; 1, 3, 3, 1; 1, 4, 6, 4, 1; ... k=3: 1; 1, 1, 1; 1, 2, 3, 2, 1; 1, 3, 6, 7, 6, 3, 1; ... k=4: 1; 1, 1, 1, 1; 1, 2, 3, 4, 3, 2, 1; ... For example, (1 + x + x^2)^3 = 1 + 3*x + 6*x^2 + 7*x^3 + 6*x^4 + 3*x^5 + x^6, hence T(3,3,2) = T(3,3,4) = 6. From _Eitan Y. Levine_, Apr 23 2023: (Start) Example for the repeated cumulative sum formula, for (k,n)=(3,3) (each line is the cumulative sum of the previous line, and the first line is the padded, alternating 3rd row from Pascal's triangle): 1 0 0 -3 0 0 3 0 0 -1 1 1 1 -2 -2 -2 1 1 1 1 2 3 1 -1 -3 -2 -1 1 3 6 7 6 3 1 which is T(3,3,h). (End)
Links
- Andrey Zabolotskiy, slices with k+n = 1..20, flattened
- Florentin Smarandache, K-Nomial Coefficients, arXiv:math/0612062 [math.GM], 2006 (originally published in French in: F. Smarandache, Généralisations et Généralités, Ed. Nouvelle, 1984, pp. 24-26).
Crossrefs
k-nomial arrays for fixed k=1..10: A000012, A007318, A027907, A008287, A035343, A063260, A063265, A171890, A213652, A213651.
Central n-nomial coefficients for n=1..9, i.e., sequences with h=floor(n*(k-1)/2) and fixed n: A000012, A000984 (A001405), A002426, A005721 (A005190), A005191, A063419 (A018901), A025012, (A025013), A025014, A174061 (A025015), A201549, (A225779), A201550. Arrays: A201552, A077042, see also cfs. therein.
Programs
-
Mathematica
a = Table[CoefficientList[Sum[x^(h-1),{h,k}]^n,x],{k,10},{n,0,9}]; Flatten@Table[a[[s-n,n+1]],{s,10},{n,0,s-1}] (* alternate program *) row[k_, n_] := Nest[Accumulate,Upsample[Table[((-1)^j)*Binomial[n,j],{j,0,n}],k],n][[;;n*(k-1)+1]] (* Eitan Y. Levine, Apr 23 2023 *)
Formula
T(k,n,h) = Sum_{i = 0..floor(h/k)} (-1)^i*binomial(n,i)*binomial(n+h-1-k*i,n-1). [Corrected by Eitan Y. Levine, Apr 23 2023]
From Eitan Y. Levine, Apr 23 2023: (Start)
(T(k,n,h))_{h=0..n*(k-1)} = f(f(...f(g(P))...)), where:
(x_i)_{i=0..m} denotes a tuple (in particular, the LHS contains the values for 0 <= h <= n*(k-1)),
f repeats n times,
f((x_i){i=0..m}) = (Sum{j=0..i} x_j)_{i=0..m} is the cumulative sum function,
g((x_i){i=0..m}) = (x(i/k) if k|i, otherwise 0)_{i=0..m*k} is adding k-1 zeros between adjacent elements,
and P=((-1)^i*binomial(n,i))_{i=0..n} is the n-th row of Pascal's triangle, with alternating signs. (End)
From Eitan Y. Levine, Jul 27 2023: (Start)
Recurrence relations, the first follows from the sequence's defining polynomial as mentioned in the Smarandache link:
T(k,n+1,h) = Sum_{i = 0..s-1} T(k,n,h-i)
T(k+1,n,h) = Sum_{i = 0..n} binomial(n,i)*T(k,n-i,h-i*k) (End)
Comments