A077042 Square array read by falling antidiagonals of central polynomial coefficients: largest coefficient in expansion of (1 + x + x^2 + ... + x^(n-1))^k = ((1-x^n)/(1-x))^k, i.e., the coefficient of x^floor(k*(n-1)/2) and of x^ceiling(k*(n-1)/2); also number of compositions of floor(k*(n+1)/2) into exactly k positive integers each no more than n.
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 3, 3, 1, 1, 0, 1, 6, 7, 4, 1, 1, 0, 1, 10, 19, 12, 5, 1, 1, 0, 1, 20, 51, 44, 19, 6, 1, 1, 0, 1, 35, 141, 155, 85, 27, 7, 1, 1, 0, 1, 70, 393, 580, 381, 146, 37, 8, 1, 1, 0, 1, 126, 1107, 2128, 1751, 780, 231, 48, 9, 1, 1, 0, 1, 252, 3139
Offset: 0
Examples
Rows of square array start: 1, 0, 0, 0, 0, 0, 0, ... 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 2, 3, 6, 10, 20, ... 1, 1, 3, 7, 19, 51, 141, ... 1, 1, 4, 12, 44, 155, 580, ... 1, 1, 5, 19, 85, 381, 1751, ... ... Read by antidiagonals: 1; 0, 1; 0, 1, 1; 0, 1, 1, 1; 0, 1, 2, 1, 1; 0, 1, 3, 3, 1, 1; 0, 1, 6, 7, 4, 1, 1; ...
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Denis Bouyssou, Thierry Marchant, Marc Pirlot, The size of the largest antichains in products of linear orders, arXiv:1903.07569 [math.CO], 2019.
- J. W. Sander, On maximal antihierarchic sets of integers, Discrete Mathematics, Volume 113, Issues 1-3, 5 April 1993, Pages 179-189.
- Index entries for sequences related to compositions
Crossrefs
Programs
-
Mathematica
t[n_, k_] := Max[ CoefficientList[ Series[ ((1-x^n) / (1-x))^k, {x, 0, k*(n-1)}], x]]; t[0, 0] = 1; t[0, ] = 0; Flatten[ Table[ t[n-k, k], {n, 0, 12}, {k, n, 0, -1}]] (* _Jean-François Alcover, Nov 04 2011 *)
-
PARI
T(n,k)=if(n<1 || k<1,k==0,vecmax(Vec(((1-x^n)/(1-x))^k)))
Formula
By the central limit theorem, T(n,k) is roughly n^(k-1)*sqrt(6/(Pi*k)).
T(n,k) = Sum{j=0,h/n} (-1)^j*binomial(k,j)*binomial(k-1+h-n*j,k-1) with h=floor(k*(n-1)/2), k>0. - Michel Marcus, Dec 01 2012
Comments