A273989 Decimal expansion of the odd Bessel moment t(5,1) (see the referenced paper about the elliptic integral evaluations of Bessel moments).
6, 6, 0, 3, 4, 4, 8, 6, 9, 0, 1, 8, 6, 7, 2, 3, 5, 7, 8, 3, 7, 2, 6, 6, 8, 3, 1, 7, 0, 5, 9, 9, 4, 2, 6, 3, 8, 5, 4, 2, 4, 1, 9, 9, 1, 6, 9, 6, 8, 7, 3, 8, 5, 8, 3, 0, 0, 8, 0, 3, 5, 8, 7, 5, 5, 3, 8, 9, 4, 9, 5, 8, 6, 8, 3, 7, 9, 9, 4, 4, 5, 4, 1, 0, 9, 8, 1, 0, 7, 2, 0, 1, 2, 1, 7, 5, 3, 2, 7, 6, 8, 4, 2, 4, 3
Offset: 0
Examples
0.660344869018672357837266831705994263854241991696873858300803587553894...
Links
- David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, Elliptic integral evaluations of Bessel moments, arXiv:0801.0891 [hep-th], 2008, page 21.
Crossrefs
Programs
-
Mathematica
t[5, 1] = NIntegrate[x*BesselI[0, x]^2*BesselK[0, x]^3, {x, 0, Infinity}, WorkingPrecision -> 105]; RealDigits[t[5, 1]][[1]] (* or: *) t[5, 1] = 4(7 - 4*Sqrt[3]) EllipticK[1 - 32/(16 + 7*Sqrt[3] - Sqrt[15])] EllipticK[1 - 32/(16 + 7*Sqrt[3] + Sqrt[15])]; RealDigits[t[5, 1], 10, 105][[1]] RealDigits[EllipticK[(16 - 7 Sqrt[3] - Sqrt[15])/32] EllipticK[(16 - 7 Sqrt[3] + Sqrt[15])/32]/4, 10, 105][[1]] (* Jan Mangaldan, Jan 06 2017 *)
Formula
Integral_{0..inf} x*BesselI_0(x)^2*BesselK_0(x)^3.
Equals 4(7 - 4*sqrt(3)) EllipticK(1 - 32/(16 + 7*sqrt(3) - sqrt(15))) EllipticK(1 - 32/(16 + 7*sqrt(3) + sqrt(15))).