A274011 a(n) is the greatest number of elements in a partition of n into distinct parts such that no two elements add to another.
1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 7, 6, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 7, 8, 7, 8, 7, 8, 7, 8, 7, 8, 8, 8, 8, 8, 8, 8, 9, 8, 9, 8, 9, 8
Offset: 1
Keywords
Examples
a(24) = 5 because {1,2,4,7,10} is a partition of 24 and there are no sum-free partitions with more parts. Candidates for such a partition of size 5 of 24 are found by adding [0,1,2,3,4] to partitions of 5 of 24 - (0+1+2+3+4). - _David A. Corneth_, Jun 06 2016 a(25) = 5 because {1,3,5,7,9} is a partition of 25. {1,2,4,7,11} does not show that a(25) >= 5 because 4,7, and 11 are all elements of the set and 4+7=11.
Programs
-
Mathematica
dif[w_] := Length[w] <= 2 || {} == Intersection[w, Reap[ Do[ Sow[w[[i]] + w[[j]]], {i, Length@ w}, {j, i-1}]][[2, 1]]]; p[tg_, w_] := If[tg == 0, bst = Max[bst, Length@ w], Block[{v=If[w == {}, 0, Last@w], u}, Do[u = Append[w, k]; If[dif@ u, p[tg-k, u]], {k, v+1, tg}]]]; a[n_] := (bst = 0; p[n, {}]; bst); Array[a, 50] (* Giovanni Resta, Jun 06 2016 *)
Extensions
a(25)-a(86) from Giovanni Resta, Jun 06 2016
Comments