A274019 Number of n-bead quaternary necklaces (no turning over allowed) that avoid the subsequence 110.
1, 4, 10, 23, 66, 192, 636, 2092, 7228, 25175, 89212, 318808, 1150444, 4177908, 15268494, 56078527, 206903020, 766342160, 2848351388, 10619472284, 39702648534, 148806583111, 558999381656, 2104255629608, 7936108068008, 29982733437844, 113456750715426, 429964269551767, 1631663320986086
Offset: 0
Keywords
Examples
The following necklace . 1-1 . / \ . 0 0 . | | . 1 3 . \ / . 0-2 contains one instance of the subsequence starting in the upper left corner. Unlike a bracelet, the necklace is oriented.
Links
- P. Hadjicostas and L. Zhang, On cyclic strings avoiding a pattern, Discrete Mathematics, 341 (2018), 1662-1674.
- Math Stackexchange, Marko Riedel et al., Counting circular sequences.
- Marko Riedel, Maple code for this sequence.
Formula
G.f.: 1 - Sum_{n>=1} (phi(n)/n)*log(x^(3*n)-q*x^n+1), where q=4 is the number of symbols in the alphabet we are using. - Petros Hadjicostas, Sep 12 2017
Define sequence (c(n): n>=1) by c(1) = q, c(2) = q^2, c(3) = q^3-3, and c(n) = q*c(n-1) - c(n-3) for n>=4. Then a(n) = (1/n)*Sum_{d|n} phi(n/d)*c(d) for n>=1. (Here q=4.) - Petros Hadjicostas, Jan 29 2018
Comments