cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274029 Product of infinitary divisors of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 36, 7, 64, 9, 100, 11, 144, 13, 196, 225, 16, 17, 324, 19, 400, 441, 484, 23, 331776, 25, 676, 729, 784, 29, 810000, 31, 1024, 1089, 1156, 1225, 1296, 37, 1444, 1521, 2560000, 41, 3111696, 43, 1936, 2025, 2116, 47, 2304, 49, 2500, 2601, 2704, 53, 8503056, 3025
Offset: 1

Views

Author

Vladimir Shevelev, Jun 07 2016

Keywords

Comments

The sequence consists of primes and squares. However, not all squares are present. The first square that does not appear is 576.
The positions of records of the sequence form A273011.

Crossrefs

Programs

  • Mathematica
    f[x_] := If[x == 1, 1, Sort@ Flatten@ Outer[Times, Sequence @@ (FactorInteger[x] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]] ; Array[Times @@ f@ # &, 55] (* Michael De Vlieger, Jun 07 2016, after Paul Abbott at A077609 *)

Formula

As in A007955(n) = n^(d(n)/2), where d(n) is the number of divisors of n, a(n) = n^(id(n)/2), where id(n) is the number of i-divisors (or infinitary divisors) of n.
Indeed, a(n) = Product_{id|n} id = Product_{id|n} n/id, thus a(n)^2 = Product_{id|n} n = n^id(n), and the formula follows. But, according to our comment in A037445, if k is the number of distinct A050376-factors q_j such that n = Product(q_j), then id(n) = 2^k. So a(n) = n^(2^(k-1)).