cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A157488 a(1) = 1; for n > 1, a(n) = product of exponential divisors of n.

Original entry on oeis.org

1, 2, 3, 8, 5, 6, 7, 16, 27, 10, 11, 72, 13, 14, 15, 128, 17, 108, 19, 200, 21, 22, 23, 144, 125, 26, 81, 392, 29, 30, 31, 64, 33, 34, 35, 46656, 37, 38, 39, 400, 41, 42, 43, 968, 675, 46, 47, 3456, 343, 500, 51, 1352, 53, 324, 55, 784, 57, 58, 59, 1800, 61, 62, 1323, 4096
Offset: 1

Views

Author

Jaroslav Krizek, Mar 01 2009

Keywords

Comments

The exponential divisors of a number n = Product p(i)^e(i) are all numbers of the form Product p(i)^s(i) where s(i) divides e(i) for all i.
Not multiplicative: a(3)=3 (e-divisor 3^1), a(4)=8 (e-divisors 2^1 and 2^2), but a(12)=72 (e-divisors 3*2 and 3*2^2) <> a(3)*a(4). - R. J. Mathar, Apr 14 2011

Examples

			For n = 16 = 2^4 = the a(16) = 2^(A000203(4)) = 2^7 = 128. e-divisors of number 16 is 2, 4, 16, their product is 128.
		

Crossrefs

Programs

  • Magma
    [ &*[ d: d in Divisors(n) | forall(t) { p: p in P | v gt 0 and e mod v eq 0 where v is Valuation(d, p) where e is Valuation(n, p) } where P is PrimeDivisors(n) ]: n in [2..64] ]; // Klaus Brockhaus, May 26 2009
  • Mathematica
    f[p_, e_] := p^(DivisorSigma[1, e]/DivisorSigma[0, e]); a[n_] :=(Times @@ (f @@@ (fct = FactorInteger[n])))^(Times @@ DivisorSigma[0, Last /@ fct]); Array[a, 100] (* Amiram Eldar, Jun 03 2020 *)

Formula

a(1) = 1, a(p) = p, a(p*q) = p*q, a(p*q...*z) = pq...z, a(p^k) = p^(A000203(k)), for p, q, ..., z distinct primes and k > 1 an integer.
From Amiram Eldar, Jun 03 2020: (Start)
If n = Product_{i} p_i^e_i then a(n) = Product_{i} p_i^(sigma(e_i) * d_exp(n) / d(e_i)), where d_exp(n) = Product_{i} d(e_i) is the number of exponential divisors of n (A049419), d(e) and sigma(e) are the number of divisors (A000005) of e and their sum (A000203).
a(n) <= A007955(n) with equality if and only if n is noncomposite. (End)

Extensions

a(1) = 1 from N. J. A. Sloane, Mar 02 2009
a(60) corrected by Klaus Brockhaus, May 26 2009
Showing 1-1 of 1 results.