cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A332622 Numbers where records occur for the product of exponential divisors function (A157488).

Original entry on oeis.org

1, 2, 3, 4, 8, 9, 12, 16, 20, 28, 36, 72, 100, 144, 324, 400, 576, 900, 1764, 2700, 3528, 3600, 7056, 10800, 14400, 28224, 32400, 44100, 88200, 108900, 129600, 176400, 396900, 435600, 608400, 705600, 1587600, 3920400, 5336100, 5475600, 6350400, 14288400, 15681600
Offset: 1

Views

Author

Amiram Eldar, Jun 05 2020

Keywords

Comments

The corresponding record values are 1, 2, 3, 8, 16, 27, 72, 128, 200, 392, 46656, 186624, 1000000, ...

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(DivisorSigma[1, e]/DivisorSigma[0, e]); exprod[n_] := (Times @@ (f @@@ (fct = FactorInteger[n])))^(Times @@ DivisorSigma[0, Last /@ fct]); em = 0; s = {}; Do[If[(e = exprod[n]) > em, em = e; AppendTo[s, n]], {n, 1, 10^6}]; s

Formula

The first 8 terms of A157488 are 1, 2, 3, 8, 5, 6, 7 and 16. The record values occur at 1, 2, 3, 4 and 8 - the first 5 terms of this sequence.

A160199 Product of non-exponential divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 4, 1, 10, 1, 24, 1, 14, 15, 8, 1, 54, 1, 40, 21, 22, 1, 2304, 1, 26, 9, 56, 1, 27000, 1, 512, 33, 34, 35, 216, 1, 38, 39, 6400, 1, 74088, 1, 88, 135, 46, 1, 73728, 1, 250, 51, 104, 1, 26244, 55, 12544, 57, 58, 1, 25920000, 1, 62, 189, 512, 65, 287496, 1
Offset: 1

Views

Author

Jaroslav Krizek, May 04 2009

Keywords

Comments

The non-exponential divisors of n are those divisors of n that are not exponential divisors of n.
There are only a few duplicates > 1. For example a(32) = a(64) = 512, a(243) = a(729) = 19683, a(3125) = a(15625) = 1953125. Antti Karttunen, Jan 24 2025

Examples

			The divisors of 6 are 1, 2, 3, 6. The only exponential divisor of 6 is 6, hence a(6) = 1*2*3 = 6.
The divisors of 16 are 1, 2, 4, 8, 16. The exponential divisors of 16 are 2, 4, 16, hence a(16) = 1*8 = 8.
		

Crossrefs

Cf. A007955 (product of divisors of n), A157488 (product of exponential divisors of n), A049419.

Programs

  • Magma
    [1] cat [ &*[ d: d in Divisors(n) | exists(t) { p: p in P | v eq 0 or e mod v gt 0 where v is Valuation(d, p) where e is Valuation(n, p) } where P is PrimeDivisors(n) ]: n in [2..67] ]; // Klaus Brockhaus, May 26 2009
    
  • Mathematica
    f[p_, e_] := p^(DivisorSigma[1, e]/DivisorSigma[0, e]); a[n_] := Module[{fct = FactorInteger[n], e}, e = fct[[;; , 2]]; n^(Times @@ (e + 1)/2)/(Times @@ (f @@@ fct))^(Times @@ DivisorSigma[0, e])]; Array[a, 100] (* Amiram Eldar, Jan 25 2025 *)
  • PARI
    A007955(n) = if(issquare(n, &n), n^numdiv(n^2), n^(numdiv(n)/2));
    A049419(n) = factorback(apply(numdiv,factor(n)[,2]));
    A157488(n) = { my(f=factor(n), dexp=A049419(n)); prod(i=1, #f~, f[i, 1]^((sigma(f[i, 2]) * dexp / numdiv(f[i, 2])))); };
    A160199(n) = (A007955(n) / A157488(n)); \\ Antti Karttunen, Jan 24 2025

Formula

a(n) = A007955(n) / A157488(n).

Extensions

Edited by Klaus Brockhaus, May 26 2009
Showing 1-2 of 2 results.