cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274035 Numbers k such that k^7 = a^2 + b^3 for positive integers a and b.

Original entry on oeis.org

2, 5, 8, 9, 10, 12, 15, 17, 24, 26, 28, 31, 33, 36, 37, 40, 43, 44, 46, 50, 52, 54, 56, 57, 63, 65, 68, 69, 72, 73, 76, 80, 82, 89, 91, 98, 100, 101, 108, 113, 122, 126, 127, 128, 129, 134, 136, 141, 145, 148, 150, 152, 161, 164, 168, 170, 171, 174, 177, 183, 185, 189, 192, 196, 197
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    okQ[n_] := Module[{a, b}, For[b = 1, b < n^(7/3), b++, If[IntegerQ[a = Sqrt[n^7 - b^3]] && a > 0, Print["n = ", n, ", a = ", a, ", b = ", b]; Return[True]]]; False];
    Reap[For[n = 1, n < 200, n++, If[okQ[n], Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jan 30 2019 *)
  • PARI
    isA055394(n)=for(k=1,sqrtnint(n-1,3),if(issquare(n-k^3),return(1)));0
    is(n)=isA055394(n^7)
    
  • Sage
    # Sage cannot handle n = 123, 174, ... without the fallback, even with descent_second_limit = 1000.
    def fallback(n):
        return gp("my(n=" + str(n) + ");for(k=1,sqrtnint(n-1,3),if(issquare(n-k^3),return(1)));0")
    def isA055394(z):
        z7 = z^7
        E = EllipticCurve([0,z7], descent_second_limit = 1000)
        try:
            for c in E.integral_points():
                if c[0] < 0 and c[1] != 0:
                    return True
            return False
        except RuntimeError:
            return fallback(z7)
    [x for x in range(1, 201) if isA055394(x)]

Extensions

Missing term 174 inserted by Jean-François Alcover, Jan 30 2019