A274062 Even numbers such that the sum of the odd divisors is a Fibonacci number F and the sum of the even divisors is 2F.
2, 14, 18, 230, 238, 4958, 53430, 57930, 64506, 65586, 68226, 70730, 77270, 78638, 81926, 84986, 88826, 90446, 91306, 1006350, 1248054, 1341950, 18177726, 19033854, 19603430, 21044030, 22356798, 22395522, 22876730, 23954170, 24241966, 24840710, 24883910, 25285666, 25306246
Offset: 1
Keywords
Examples
18 is in the sequence because: its divisors are {1, 2, 3, 6, 9, 18}; the sum of its odd divisors is 1 + 3 + 9 = 13, a Fibonacci number, and the sum of its even divisors is 2 + 6 + 18 = 26 = 2*13.
Programs
-
Maple
with(numtheory): for n from 2 by 2 to 10^7 do: y:=divisors(n):n1:=nops(y):s0:=0:s1:=0: for k from 1 to n1 do: if irem(y[k], 2)=0 then s0:=s0+ y[k]: else s1:=s1+ y[k]: fi: od: if s0=2*s1 then ii:=0: x:=sqrt(5*s1^2+4):y:=sqrt(5*s1^2-4): if x=floor(x) or y=floor(y) then printf ( "%d %d \n",n,s1): else fi: fi: od:
-
Mathematica
t = Fibonacci@ Range@ 40; Select[Range[2, 2*10^6, 4], Function[d, And[Total@ Select[d, EvenQ] == 2 #, MemberQ[t, #]] &@ Total@ Select[d, OddQ]]@ Divisors@ # &] (* Michael De Vlieger, Jun 09 2016 *)
-
PARI
isok(n) = sod = sumdiv(n, d, d*(d % 2)); (2*sod == sumdiv(n, d, d*(1-(d % 2)))) && (issquare(5*sod^2-4) || issquare(5*sod^2+4)); \\ Michel Marcus, Jun 09 2016
Extensions
a(23)-a(35) from Michel Marcus, Jun 14 2016
Comments