A274110 Number of equivalence classes of ballot paths of length n for the string uu.
1, 2, 3, 5, 8, 14, 24, 42, 73, 128, 224, 393, 689, 1209, 2121, 3722, 6531, 11461, 20112, 35294, 61936, 108690, 190737, 334720, 587392, 1030801, 1808929, 3174449, 5570769, 9776018, 17155715, 30106181, 52832664, 92714862, 162703240, 285524282, 501060185, 879299328, 1543062752, 2707886361
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- K. Manes, A. Sapounakis, I. Tasoulas, and P. Tsikouras, Equivalence classes of ballot paths modulo strings of length 2 and 3, arXiv:1510.01952 [math.CO], 2015.
- Index entries for linear recurrences with constant coefficients, signature (2,0,-1,1,-1).
Programs
-
Mathematica
CoefficientList[Series[(1 - x^2 - x^4) / ((x - 1) (1 + x) (x^3 - x^2 + 2 x - 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 18 2016 *)
-
PARI
apply( {A274110(n)=(matcompanion(x^5-2*x^4+x^2-x+1)^n)[5,3]+1}, [1..44]) \\ M. F. Hasler, Jun 22 2021
Formula
G.f.: x*(1-x^2-x^4) / ( (x-1)*(1+x)*(x^3-x^2+2*x-1) ). - R. J. Mathar, Jun 20 2016
a(n) = 2*a(n-1) - a(n-3) + a(n-4) - a(n-5). - Wesley Ivan Hurt, Mar 15 2023