A274111 Number of equivalence classes of ballot paths of length n for the string ddd.
1, 1, 1, 1, 1, 1, 2, 3, 5, 7, 10, 13, 20, 28, 45, 65, 101, 143, 222, 317, 500, 726, 1143, 1661, 2608, 3796, 5983, 8764, 13835, 20335, 32089, 47251, 74637, 110227, 174302, 258095, 408276, 605664, 958551, 1424659, 2256136, 3359446, 5322449, 7937666, 12580545
Offset: 0
Links
- Gheorghe Coserea, Table of n, a(n) for n = 0..300
- K. Manes, A. Sapounakis, I. Tasoulas, P. Tsikouras, Equivalence classes of ballot paths modulo strings of length 2 and 3, arXiv:1510.01952 [math.CO], 2015, proposition 3.2.
Programs
-
Mathematica
terms = 45; A[]=0; Do[A[x] = (1-2(-1+x)^2 x A[x]^2 + x^2 (-1+2x-x^2+x^4) A[x]^3)/(1-3x+x^2) + O[x]^terms, terms]; CoefficientList[A[x], x] (* Jean-François Alcover, Oct 07 2018 *)
-
PARI
x='x; y='y; Fxy = x^2*(1-2*x+x^2-x^4)*y^3 + 2*x*(1-x)^2*y^2 + (1-3*x+x^2)*y - 1; seq(N) = { my(y0 = 1 + O('x^N), y1=0); for (k = 1, N, y1 = y0 - subst(Fxy, y, y0)/subst(deriv(Fxy, y), y, y0); if (y1 == y0, break()); y0 = y1); Vec(y0); }; seq(45) \\ Gheorghe Coserea, Jan 05 2017
Formula
The g.f. satisfies x^2*(1-2*x+x^2-x^4)*A(x)^3 + 2*x*(1-x)^2*A(x)^2 + (1-3*x+x^2)*A(x) - 1 = 0. - R. J. Mathar, Jun 20 2016
Extensions
a(0)=1 prepended by Gheorghe Coserea, Jan 05 2017