A274115 Number of equivalence classes of Dyck paths of semilength n for the string duu.
1, 1, 1, 2, 4, 8, 17, 35, 75, 157, 337, 712, 1529, 3248, 6976, 14869, 31937, 68222, 146536, 313487, 673351, 1441999, 3097326, 6637879, 14257734, 30572032, 65666593, 140860379, 302557585, 649202036, 1394434685, 2992721902, 6428118868, 13798302512, 29637567305, 63626933527, 136665012979
Offset: 0
Links
- Gheorghe Coserea, Table of n, a(n) for n = 0..300
- Cyril Banderier and Michael Wallner, Lattice paths with catastrophes, arXiv:1707.01931 [math.CO], 2017.
- Jean-Luc Baril and Sergey Kirgizov, Bijections from Dyck and Motzkin meanders with catastrophes to pattern avoiding Dyck paths, arXiv:2104.01186 [math.CO], 2021.
- K. Manes, A. Sapounakis, I. Tasoulas, and P. Tsikouras, Equivalence classes of ballot paths modulo strings of length 2 and 3, arXiv:1510.01952 [math.CO], 2015.
Programs
-
Mathematica
A[x_] = 1 + x/(1 + ((1 + x)(Sqrt[1 - 4x^2] - 1))/(2x)) + O[x]^40; CoefficientList[A[x], x] (* Jean-François Alcover, Jul 27 2018, after Gheorghe Coserea *)
-
Maxima
a(n):=if n<2 then 1 else sum((k+1)*sum((binomial(k+1,2*k+2*i-n+3)*binomial(k+2*i,i))/(k+i+1),i,0,(n-k)/2),k,0,n); /* Vladimir Kruchinin, Feb 14 2019 */
-
PARI
seq(N) = { my(x='x+O('x^N), A000108 = 1+x*Ser(vector(N\2, n, binomial(2*n,n)/(n+1)),'x)); Vec(1+x/(1 - x*(1+x)*subst(A000108,'x,'x^2))); }; seq(37) \\ Gheorghe Coserea, Jan 06 2017
Formula
A(x) = 1 + x/(1 - x*(1+x)*A000108(x^2)). - Gheorghe Coserea, Jan 06 2017
a(n) = Sum_{k=0..n} (k+1)*Sum_{i=0..floor((n-k)/2)} C(k+1,2*k+2*i-n+3)*C(k+2*i,i)/(k+i+1), n>1, a(0)=1,a(1)=1. - Vladimir Kruchinin, Feb 14 2019
D-finite with recurrence (-n+1)*a(n) +2*a(n-1) +7*(n-3)*a(n-2) +3*(n-5)*a(n-3) +(-11*n+53)*a(n-4) +4*(-3*n+16)*a(n-5) +4*(-n+6)*a(n-6)=0. - R. J. Mathar, Sep 27 2020
Extensions
a(0)=1 prepended and more terms from Gheorghe Coserea, Jan 06 2017
Comments