cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274141 Positive numbers divisible by 3^3 or by the square of some other prime.

Original entry on oeis.org

4, 8, 12, 16, 20, 24, 25, 27, 28, 32, 36, 40, 44, 48, 49, 50, 52, 54, 56, 60, 64, 68, 72, 75, 76, 80, 81, 84, 88, 92, 96, 98, 100, 104, 108, 112, 116, 120, 121, 124, 125, 128, 132, 135, 136, 140, 144, 147, 148, 150, 152, 156, 160, 162, 164, 168, 169, 172, 175, 176
Offset: 1

Views

Author

Vladimir Shevelev, Jun 11 2016

Keywords

Comments

Or numbers n>=4 having a divisor k^2>=4 such that n and n/k^2 equal modulo 3.
All positive multiples of 4 are in the sequence.
Or numbers n such that there is a smaller positive number j == n (mod 3) such that sqrt(j*n) is an integer. The smallest such j corresponds to the greatest k; or, the same, j = 3*A007913(n/3), if n is divisible by 3 and otherwise j=A007913(n).
Or complement to the sequence: S, 3*S and 9*S, where S denotes the sequence of the squarefree numbers not divisible by 3.

Crossrefs

Programs

  • Mathematica
    Select[Range[200], (e = IntegerExponent[#, 3]) > 2 || ! SquareFreeQ[#/3^e] &] (* Amiram Eldar, Feb 25 2021 *)
  • PARI
    isok(n) = (((v=valuation(n, 3)) >= 3) || (((m = n/3^v) > 1) && (vecmax((factor(m))[,2]) >=2))); \\ Michel Marcus, Jun 12 2016

Formula

Let A(x) be the number of a(n)<=x. Then A(x)~(1 - 6.5/Pi^2)*x = 0.34141230...*x as x goes to infinity.