cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274181 Decimal expansion of Phi(1/2, 2, 2), where Phi is the Lerch transcendent.

Original entry on oeis.org

3, 2, 8, 9, 6, 2, 1, 0, 5, 8, 6, 0, 0, 5, 0, 0, 2, 3, 6, 1, 0, 6, 2, 5, 2, 8, 0, 6, 3, 8, 7, 2, 0, 4, 3, 4, 9, 7, 6, 7, 9, 3, 8, 9, 9, 2, 2, 4, 5, 0, 5, 7, 0, 1, 7, 3, 7, 3, 8, 8, 1, 9, 1, 4, 9, 2, 6, 8, 4, 1, 7, 6, 2, 8, 6, 7, 3, 2, 8, 0, 3, 2, 6, 7, 3, 6, 1, 2, 7, 4, 3, 5, 1, 6, 6, 3, 4, 2, 8, 7, 4
Offset: 0

Views

Author

Johannes W. Meijer and N. H. G. Baken, Jun 17 2016, Jul 08 2016

Keywords

Comments

The exponential integral distribution is defined by p(x, m, n, mu) = ((n+mu-1)^m * x^(mu-1) / (mu-1)!) * E(x, m, n), see A163931 and the Meijer link. The moment generating function of this probability distribution function is M(a, m, n, mu) = Sum_{k>=0}(((mu+k-1)!/((mu-1)!*k!)) * ((n+mu-1) / (n+mu+k-1))^m * a^k).
In the special case that mu=1 we get p(x, m, n, mu=1) = n^m * E(x, m, n) and M(a, m, n, mu=1) = n^m * Phi(a, m, n), with Phi the Lerch transcendent. If n=1 and mu=1 we get M(a, m, n=1, mu=1) = polylog(m, a)/a = Li_m(a)/a.

Examples

			0.32896210586005002361062528063872043497679389922...
		

References

  • William Feller, An introduction to probability theory and its applications, Vol. 1. p. 285, 1968.

Crossrefs

Cf. A163931, A002162 (Phi(1/2, 1, 1)/2), A076788 (Phi(1/2, 2, 1)/2), A112302, A008276.

Programs

  • Maple
    Digits := 101; c := evalf(LerchPhi(1/2, 2, 2));
  • Mathematica
    N[HurwitzLerchPhi[1/2, 2, 2], 25] (* G. C. Greubel, Jun 19 2016 *)
  • PARI
    Pi^2/3 - 2*log(2)^2 - 2 \\ Altug Alkan, Jul 08 2016
    
  • PARI
    lerchphi(.5,2,2) \\ Charles R Greathouse IV, Jan 30 2025
    
  • Python
    from mpmath import mp, lerchphi
    mp.dps=102
    print([int(d) for d in list(str(lerchphi(1/2, 2, 2))[2:-1])]) # Indranil Ghosh, Jul 04 2017

Formula

Equals Phi(1/2, 2, 2) with Phi the Lerch transcendent.
Equals Sum_{k>=0}(1/((2+k)^2*2^k)).
Equals 4 * polylog(2, 1/2) - 2.
Equals Pi^2/3 - 2*log(2)^2 - 2.
Equals Integral_{x=0..oo} x*exp(-x)/(exp(x)-1/2) dx. - Amiram Eldar, Aug 24 2020