A274181 Decimal expansion of Phi(1/2, 2, 2), where Phi is the Lerch transcendent.
3, 2, 8, 9, 6, 2, 1, 0, 5, 8, 6, 0, 0, 5, 0, 0, 2, 3, 6, 1, 0, 6, 2, 5, 2, 8, 0, 6, 3, 8, 7, 2, 0, 4, 3, 4, 9, 7, 6, 7, 9, 3, 8, 9, 9, 2, 2, 4, 5, 0, 5, 7, 0, 1, 7, 3, 7, 3, 8, 8, 1, 9, 1, 4, 9, 2, 6, 8, 4, 1, 7, 6, 2, 8, 6, 7, 3, 2, 8, 0, 3, 2, 6, 7, 3, 6, 1, 2, 7, 4, 3, 5, 1, 6, 6, 3, 4, 2, 8, 7, 4
Offset: 0
Examples
0.32896210586005002361062528063872043497679389922...
References
- William Feller, An introduction to probability theory and its applications, Vol. 1. p. 285, 1968.
Links
- J. W. Meijer and N. H. G. Baken, The Exponential Integral Distribution, Statistics and Probability Letters, Volume 5, No. 3, April 1987. pp 209-211.
- Eric W. Weisstein’s World of Mathematics, Lerch transcendent.
- Eric W. Weisstein’s World of Mathematics, Polylogarithm.
Programs
-
Maple
Digits := 101; c := evalf(LerchPhi(1/2, 2, 2));
-
Mathematica
N[HurwitzLerchPhi[1/2, 2, 2], 25] (* G. C. Greubel, Jun 19 2016 *)
-
PARI
Pi^2/3 - 2*log(2)^2 - 2 \\ Altug Alkan, Jul 08 2016
-
PARI
lerchphi(.5,2,2) \\ Charles R Greathouse IV, Jan 30 2025
-
Python
from mpmath import mp, lerchphi mp.dps=102 print([int(d) for d in list(str(lerchphi(1/2, 2, 2))[2:-1])]) # Indranil Ghosh, Jul 04 2017
Formula
Equals Phi(1/2, 2, 2) with Phi the Lerch transcendent.
Equals Sum_{k>=0}(1/((2+k)^2*2^k)).
Equals 4 * polylog(2, 1/2) - 2.
Equals Pi^2/3 - 2*log(2)^2 - 2.
Equals Integral_{x=0..oo} x*exp(-x)/(exp(x)-1/2) dx. - Amiram Eldar, Aug 24 2020
Comments