A274263 Integer part of the ratio of consecutive prime gaps.
2, 1, 2, 0, 2, 0, 2, 1, 0, 3, 0, 0, 2, 1, 1, 0, 3, 0, 0, 3, 0, 1, 1, 0, 0, 2, 0, 2, 3, 0, 1, 0, 5, 0, 3, 1, 0, 1, 1, 0, 5, 0, 2, 0, 6, 1, 0, 0, 2, 1, 0, 5, 0, 1, 1, 0, 3, 0, 0, 5, 1, 0, 0, 2, 3, 0, 1, 0, 2, 1, 1, 0, 1, 0, 1, 1, 0, 2, 1, 0, 5, 0, 3, 0, 1, 1, 0, 0, 2, 3, 0, 0, 2, 0, 1, 2
Offset: 1
Keywords
Examples
For n = 1 we have (prime(3)-prime(2))/(prime(2)-prime(1)) = (5-3)/(3-2) = 2 and its integer part is 2: a(1) = 2. For n = 4 we have (prime(6)-prime(5))/(prime(5)-prime(4)) = (13-11)/(11-7) = 1/2 and its integer part is 0: a(4) = 0.
Links
Crossrefs
Cf. A001223.
Programs
-
Maple
A274264 := proc(n) A001223(n+1)/A001223(n) ; floor(%) ; end proc: # R. J. Mathar, Jun 26 2016
-
Mathematica
Table[Floor[(Prime[j+2]-Prime[j+1])/(Prime[j+1]-Prime[j])],{j,1,200}]; IntegerPart[#[[2]]/#[[1]]]&/@Partition[Differences[Prime[Range[200]]],2,1] (* Harvey P. Dale, Mar 07 2018 *)
-
PARI
a(n) = (prime(n+2)-prime(n+1))\(prime(n+1)-prime(n)); \\ Michel Marcus, Jun 18 2016
Comments