A274310 Triangle read by rows: T(n,k) = number of parity alternating partitions of [n] into k blocks (1 <= k <= m).
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 6, 11, 6, 1, 1, 10, 28, 26, 9, 1, 1, 14, 61, 86, 50, 12, 1, 1, 22, 136, 276, 236, 92, 16, 1, 1, 30, 275, 770, 927, 530, 150, 20, 1, 1, 46, 580, 2200, 3551, 2782, 1130, 240, 25, 1, 1, 62, 1141, 5710, 12160, 12632, 6987, 2130, 355, 30, 1
Offset: 1
Examples
Triangle begins: 1; 1, 1; 1, 2, 1; 1, 4, 4, 1; 1, 6, 11, 6, 1; 1, 10, 28, 26, 9, 1; 1, 14, 61, 86, 50, 12, 1; 1, 22, 136, 276, 236, 92, 16, 1; ... From _Alois P. Heinz_, Jun 28 2016: (Start) T(5,1) = 1: 12345. T(5,2) = 6: 1234|5, 123|45, 125|34, 12|345, 145|23, 1|2345. T(5,3) = 11: 123|4|5, 12|34|5, 125|3|4, 12|3|45, 14|23|5, 1|234|5, 1|23|45, 145|2|3, 14|25|3, 1|25|34, 1|2|345. T(5,4) = 6: 12|3|4|5, 1|23|4|5, 14|2|3|5, 1|2|34|5, 1|25|3|4, 1|2|3|45. T(5,5) = 1: 1|2|3|4|5. (End)
Links
- Alois P. Heinz, Rows n = 1..141, flattened
- Askar Dzhumadil'daev and Damir Yeliussizov, Walks, partitions, and normal ordering, Electronic Journal of Combinatorics, 22(4) (2015), #P4.10.
Programs
-
Maple
A274310 := proc (n, k) local i; with(combinat): add(Stirling2(floor((1/2)*n+1), i+1)*Stirling2(floor((1/2)*n+1/2), k-i), i = 0..k-1); end proc: for n from 1 to 10 do seq(A274310(n, k), k = 1..n); end do; # Peter Bala, Apr 09 2018
-
Mathematica
T[n_, k_] = Sum[StirlingS2[Floor[(n + 2)/2], i + 1] * StirlingS2[Floor[(n + 1)/2], k - i], {i, 0, k - 1}]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, May 17 2018, after Peter Bala *)
Formula
T(n,k) = Sum_{i = 0..k-1} Stirling2(floor((n+2)/2), i+1) * Stirling2(floor((n+1)/2), k-i). - Peter Bala, Apr 09 2018
Extensions
More terms from Alois P. Heinz, Jun 26 2016
Comments