cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274310 Triangle read by rows: T(n,k) = number of parity alternating partitions of [n] into k blocks (1 <= k <= m).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 6, 11, 6, 1, 1, 10, 28, 26, 9, 1, 1, 14, 61, 86, 50, 12, 1, 1, 22, 136, 276, 236, 92, 16, 1, 1, 30, 275, 770, 927, 530, 150, 20, 1, 1, 46, 580, 2200, 3551, 2782, 1130, 240, 25, 1, 1, 62, 1141, 5710, 12160, 12632, 6987, 2130, 355, 30, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jun 23 2016

Keywords

Comments

The first element of any block may be odd or even and then the parity of terms alternates within each block. - Alois P. Heinz, Jun 28 2016
Let a(n,k,i) be the number of parity alternating partitions of n into k blocks, i of which have even maximal elements. Dzhumadil'daev and Yeliussizov, Proposition 5.3, give recurrences for a(n,k,i), which depend on the parity of n. It is easy to verify that the solution to these recurrences is given by a(2*n,k,i) = Stirling2(n,i)*Stirling2(n+1,k+1-i) and a(2*n+1,k,i) = Stirling2(n+1,i+1) * Stirling2(n+1,k-i). The formula below for the table entries T(n,k) follows from this observation. - Peter Bala, Apr 09 2018

Examples

			Triangle begins:
  1;
  1,   1;
  1,   2,   1;
  1,   4,   4,   1;
  1,   6,  11,   6,   1;
  1,  10,  28,  26,   9,   1;
  1,  14,  61,  86,  50,  12,   1;
  1,  22, 136, 276, 236,  92,  16,   1;
  ...
From _Alois P. Heinz_, Jun 28 2016: (Start)
T(5,1) = 1: 12345.
T(5,2) = 6: 1234|5, 123|45, 125|34, 12|345, 145|23, 1|2345.
T(5,3) = 11: 123|4|5, 12|34|5, 125|3|4, 12|3|45, 14|23|5, 1|234|5, 1|23|45, 145|2|3, 14|25|3, 1|25|34, 1|2|345.
T(5,4) = 6: 12|3|4|5, 1|23|4|5, 14|2|3|5, 1|2|34|5, 1|25|3|4, 1|2|3|45.
T(5,5) = 1: 1|2|3|4|5. (End)
		

Crossrefs

Row sums give A124419(n+1).

Programs

  • Maple
    A274310 := proc (n, k) local i;
    with(combinat):
       add(Stirling2(floor((1/2)*n+1), i+1)*Stirling2(floor((1/2)*n+1/2), k-i), i = 0..k-1);
    end proc:
    for n from 1 to 10 do
       seq(A274310(n, k), k = 1..n);
    end do; # Peter Bala, Apr 09 2018
  • Mathematica
    T[n_, k_] = Sum[StirlingS2[Floor[(n + 2)/2], i + 1] * StirlingS2[Floor[(n + 1)/2], k - i], {i, 0, k - 1}];
    Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, May 17 2018, after Peter Bala *)

Formula

T(n,k) = Sum_{i = 0..k-1} Stirling2(floor((n+2)/2), i+1) * Stirling2(floor((n+1)/2), k-i). - Peter Bala, Apr 09 2018

Extensions

More terms from Alois P. Heinz, Jun 26 2016