cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274355 Convolution of A048272 and A022567.

Original entry on oeis.org

0, 1, 2, 5, 9, 15, 27, 42, 65, 99, 148, 214, 308, 435, 605, 839, 1145, 1548, 2080, 2769, 3659, 4812, 6278, 8145, 10518, 13506, 17257, 21961, 27821, 35095, 44117, 55243, 68928, 85735, 106285, 131357, 161893, 198944, 243817, 298060, 363446
Offset: 0

Views

Author

R. J. Mathar, Jun 18 2016

Keywords

Comments

Also the convolution of A015723 and A000009.

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(add(d*[0, 1][1+
          irem(d, 2)], d=numtheory[divisors](j))*b(n-j), j=1..n)/n)
        end:
    g:= proc(n, i) option remember; `if`(i*(i+1)/2[l[1], l[2]+l[1]*j])(g(n-i*j, i-1)), j=0..min(n/i, 1))))
        end:
    a:= n-> add(b(n-j)*g(j$2)[2], j=0..n):
    seq(a(n), n=0..60);  # Alois P. Heinz, Jun 18 2016
  • Mathematica
    Table[Sum[Count[#, ?OddQ] - Count[#, ?EvenQ] &@ Divisors@ k SeriesCoefficient[QPochhammer[q, q^2]^-2, {q, 0, #}] &[n - k], {k, n}], {n, 0, 40}] (* Michael De Vlieger, Jun 18 2016, after Michael Somos at A022567 *)

Formula

a(n) = Sum_{k=1..n} A048272(k)*A022567(n-k) = Sum_{k=0..n} A015723(k)*A000009(n-k).
a(n) ~ 3^(1/4) * log(2) * exp(Pi*sqrt(2*n/3)) / (2^(7/4) * Pi * n^(1/4)). - Vaclav Kotesovec, Oct 09 2018