A274355 Convolution of A048272 and A022567.
0, 1, 2, 5, 9, 15, 27, 42, 65, 99, 148, 214, 308, 435, 605, 839, 1145, 1548, 2080, 2769, 3659, 4812, 6278, 8145, 10518, 13506, 17257, 21961, 27821, 35095, 44117, 55243, 68928, 85735, 106285, 131357, 161893, 198944, 243817, 298060, 363446
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- Mircea Merca, Combinatorial interpretations of a recent convolution for the number of divisors of a positive integer, Journal of Number Theory, Volume 160, March 2016, Pages 60-75, corollary 3.5.
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, add(add(d*[0, 1][1+ irem(d, 2)], d=numtheory[divisors](j))*b(n-j), j=1..n)/n) end: g:= proc(n, i) option remember; `if`(i*(i+1)/2
[l[1], l[2]+l[1]*j])(g(n-i*j, i-1)), j=0..min(n/i, 1)))) end: a:= n-> add(b(n-j)*g(j$2)[2], j=0..n): seq(a(n), n=0..60); # Alois P. Heinz, Jun 18 2016 -
Mathematica
Table[Sum[Count[#, ?OddQ] - Count[#, ?EvenQ] &@ Divisors@ k SeriesCoefficient[QPochhammer[q, q^2]^-2, {q, 0, #}] &[n - k], {k, n}], {n, 0, 40}] (* Michael De Vlieger, Jun 18 2016, after Michael Somos at A022567 *)
Formula
a(n) ~ 3^(1/4) * log(2) * exp(Pi*sqrt(2*n/3)) / (2^(7/4) * Pi * n^(1/4)). - Vaclav Kotesovec, Oct 09 2018
Comments