cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A274357 Numbers n such that n and n+1 both have 8 divisors.

Original entry on oeis.org

104, 135, 189, 230, 231, 285, 296, 344, 374, 375, 429, 434, 609, 645, 663, 664, 741, 776, 782, 805, 874, 902, 903, 969, 986, 1001, 1015, 1022, 1029, 1065, 1085, 1095, 1105, 1106, 1112, 1130, 1161, 1208, 1221, 1245, 1265, 1269, 1309, 1310, 1334, 1335, 1374, 1406, 1431
Offset: 1

Views

Author

Keywords

Crossrefs

Intersection of A005237 and A030626.
Numbers n such that n and n+1 both have k divisors: A039832 (k=4), A049103 (k=6), A274357 (k=8), A215197 (k=10), A174456 (k=12), A274358 (k=14), A274359 (k=16), A274360 (k=18), A274361 (k=20), A274366 (k=22), A274362 (k=24), A274363 (k=26), A274364 (k=28), A274365 (k=30).
Cf. A000005.

Programs

  • Mathematica
    SequencePosition[DivisorSigma[0,Range[2000]],{8,8}][[All,1]] (* Harvey P. Dale, Sep 07 2021 *)
  • PARI
    is(n)=numdiv(n)==8 && numdiv(n+1)==8

A336658 Numbers k such that k and k+1 both have the prime signature (2,1,1,1) (A189982).

Original entry on oeis.org

11780, 20349, 24794, 33579, 36764, 37323, 38324, 38675, 38709, 42020, 44505, 47564, 47684, 51204, 52155, 53955, 55419, 56259, 64844, 68475, 71379, 71994, 75284, 77714, 79134, 80475, 81548, 81549, 83420, 85491, 86715, 87164, 87380, 90524, 92364, 94940, 95403, 95589
Offset: 1

Views

Author

Amiram Eldar, Jul 28 2020

Keywords

Comments

Goldston et al. (2011) proved that this sequence is infinite.
Some consecutive terms are (81548, 81549), (141218, 141219), (179828, 179829). - David A. Corneth, Jul 29 2020

Examples

			11780 is a term since 11780 = 2^2 * 5 * 19 * 31 and 11781 = 3^2 * 7 * 11 * 17.
		

Crossrefs

Subsequence of A140078 and A274362.
Cf. A189982.

Programs

  • Mathematica
    seqQ[n_] := Sort[FactorInteger[n][[;; , 2]]] == {1, 1, 1, 2}; Select[Range[10^5], seqQ[#] && seqQ[# + 1] &]
Showing 1-2 of 2 results.