A274369 Let the starting square of Langton's ant have coordinates (0, 0), with the ant looking in negative x-direction. a(n) is the x-coordinate of the ant after n moves.
0, 0, 1, 1, 0, 0, -1, -1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 1, 1, 2, 2, 3, 3, 2, 2, 1, 1, 2, 2, 3, 3, 4, 4, 3, 3, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 1, 1, 0, 0, -1, -1, 0, 0, -1, -1, 0, 0, -1, -1, -2, -2, -1, -1, -2, -2, -3, -3, -2, -2, -1, -1, -2, -2, -3
Offset: 0
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..15000
- Felix Fröhlich, Coordinates of Langton's ant.
- Wikipedia, Langton's ant.
Programs
-
Python
# A274369: Langton's ant by Andrey Zabolotskiy, Jul 05 2016 def ant(n): steps = [(1, 0), (0, 1), (-1, 0), (0, -1)] black = set() x = y = 0 position = [(x, y)] direction = 2 for _ in range(n): if (x, y) in black: black.remove((x, y)) direction += 1 else: black.add((x, y)) direction -= 1 (dx, dy) = steps[direction%4] x += dx y += dy position.append((x, y)) return position print([p[0] for p in ant(100)]) # change p[0] to p[1] to get y-coordinates
Formula
a(n+104) = a(n) + 2 for n > 9975. - Andrey Zabolotskiy, Jul 05 2016