A274372 Number T(n,k) of modified skew Dyck paths of semilength n such that the area between the x-axis and the path is k; triangle T(n,k), n>=0, n<=k<=n^2, read by rows.
1, 1, 1, 0, 1, 1, 0, 2, 1, 1, 0, 1, 1, 0, 3, 2, 3, 1, 3, 2, 2, 1, 1, 0, 1, 1, 0, 4, 3, 7, 4, 7, 5, 8, 6, 6, 3, 5, 4, 3, 2, 2, 1, 1, 0, 1, 1, 0, 5, 4, 12, 10, 17, 12, 20, 18, 22, 14, 19, 16, 18, 14, 14, 12, 12, 7, 8, 7, 5, 4, 3, 2, 2, 1, 1, 0, 1
Offset: 0
Examples
T(3,3) = 1: /\/\/\ . /\ /\ T(3,5) = 2: /\/ \ , / \/\ . /\ \ \ T(3,6) = 1: / \ . /\/\ T(3,7) = 1: / \ . /\ / \ T(3,9) = 1: / \ . Triangle T(n,k) begins: n\k: 0 1 2 3 4 5 6 7 8 9 . . . . . .16 . . . . . . . .25 ---+---------------------------------------------------- 00 : 1 01 : 1 02 : 1 0 1 03 : 1 0 2 1 1 0 1 04 : 1 0 3 2 3 1 3 2 2 1 1 0 1 05 : 1 0 4 3 7 4 7 5 8 6 6 3 5 4 3 2 2 1 1 0 1
Links
- Alois P. Heinz, Rows n = 0..40, flattened
Crossrefs
Programs
-
Maple
b:= proc(x, y, t, n) option remember; expand(`if`(y>n, 0, `if`(n=y, `if`(t=2, 0, 1), b(x+1, y+1, 0, n-1)*z^ (2*y+1)+`if`(t<>1 and x>0, b(x-1, y+1, 2, n-1), 0)+ `if`(t<>2 and y>0, b(x+1, y-1, 1, n-1), 0)))) end: T:= n-> (p-> seq(coeff(p, z, i), i=n..n^2))(b(0$3, 2*n)): seq(T(n), n=0..8);
-
Mathematica
b[x_, y_, t_, n_] := b[x, y, t, n] = Expand[If[y>n, 0, If[n == y, If[t == 2, 0, 1], b[x+1, y+1, 0, n-1]*z^(2*y+1) + If[t != 1 && x>0, b[x-1, y+1, 2, n-1], 0] + If[t != 2 && y>0, b[x+1, y-1, 1, n-1], 0]]]]; T[n_] := Function[p, Table[Coefficient[p, z, i], {i, n, n^2}]][b[0, 0, 0, 2*n]]; Table[T[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Jan 25 2017, translated from Maple *)
Comments