cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A230823 Number of modified skew Dyck paths of semilength n.

Original entry on oeis.org

1, 1, 2, 6, 20, 73, 281, 1124, 4627, 19474, 83421, 362528, 1594389, 7083078, 31738724, 143281473, 651048571, 2975243348, 13665866849, 63055369522, 292130900461, 1358415528683, 6337824891559, 29660089051015, 139193062791189, 654903798282528, 3088627236146085
Offset: 0

Views

Author

David Scambler and Alois P. Heinz, Oct 31 2013

Keywords

Comments

A modified skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1) (up), D=(1,-1) (down) and A=(-1,1) (anti-down) so that A and D steps do not overlap.

Examples

			a(0) = 1: the empty path.
a(1) = 1: UD.
a(2) = 2: UUDD, UDUD.
a(3) = 6: UUUDDD, UUDUDD, UUDDUD, UAUDDD, UDUUDD, UDUDUD.
a(4) = 20: UUUUDDDD, UUUDUDDD, UUUDDUDD, UUUDDDUD, UUAUDDDD, UUDUUDDD, UUDUDUDD, UUDUDDUD, UUDDUUDD, UUDDUDUD, UAUUDDDD, UAUDUDDD, UAUDDUDD, UAUDDDUD, UDUUUDDD, UDUUDUDD, UDUUDDUD, UDUAUDDD, UDUDUUDD, UDUDUDUD.
a(5) = 73: UUUUUDDDDD, UUUUDUDDDD, UUUUDDUDDD, ..., UDUDUAUDDD, UDUDUDUUDD, UDUDUDUDUD.
		

Crossrefs

Row sums of A274372 and of A274404.

Programs

  • Maple
    b:= proc(x, y, t, n) option remember; `if`(y>n, 0,
          `if`(n=y, `if`(t=2, 0, 1), b(x+1, y+1, 0, n-1)+
          `if`(t<>1 and x>0, b(x-1, y+1, 2, n-1), 0)+
          `if`(t<>2 and y>0, b(x+1, y-1, 1, n-1), 0)))
        end:
    a:= n-> b(0$3, 2*n):
    seq(a(n), n=0..30);
  • Mathematica
    b[x_, y_, t_, n_] := b[x, y, t, n] = If[y > n, 0, If[n == y, If[t == 2, 0, 1], b[x+1, y+1, 0, n-1] + If[t != 1 && x > 0, b[x-1, y+1, 2, n-1], 0] + If[t != 2 && y > 0, b[x+1, y-1, 1, n-1], 0]] ]; a[n_] := b[0, 0, 0, 2*n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Dec 16 2013, translated from Maple *)

Formula

a(n) ~ c * 5^n / n^(3/2), where c = 0.27726256768213709977373928535... . - Vaclav Kotesovec, Jul 16 2014
G.f.: 1/(1 - x/(1 - (x + x^2)/(1 - (x + x^2 + x^3)/(1 - (x + x^2 + x^3 + x^4)/(1 - ...))))), a continued fraction (conjecture). - Ilya Gutkovskiy, Jun 08 2017

A129172 Triangle read by rows: T(n,k) is the number of skew Dyck paths of semilength n such that the area between the x-axis and the path is k (n >= 0, 0 <= k <= n^2).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 3, 2, 1, 1, 1, 0, 0, 0, 0, 1, 1, 4, 5, 5, 3, 5, 4, 3, 2, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 5, 7, 12, 10, 11, 12, 14, 12, 10, 8, 10, 7, 5, 4, 3, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 6, 9, 19, 23, 28, 26, 36, 38, 38, 32, 36, 36, 34, 29, 27, 25, 21, 15, 16, 13, 10, 7, 5
Offset: 0

Views

Author

Emeric Deutsch, Apr 09 2007

Keywords

Comments

A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of the path is defined to be the number of its steps.
Row n has n^2 + 1 terms, the first n of which are equal to 0.
Row sums yield A002212.
Sum of terms in column k is the Fibonacci number F(k) (k >= 1; F(1)=1, F(2)=1; A000045).

Examples

			T(4,7)=5 because we have UDUUUDLD, UDUUDUDL, UUDDUUDL, UUUDLDUD and UUUUDLLL.
Triangle starts:
  1;
  0, 1;
  0, 0, 1, 1, 1;
  0, 0, 0, 1, 1, 3, 2, 1, 1, 1;
  0, 0, 0, 0, 1, 1, 4, 5, 5, 3, 5, 4, 3, 2, 1, 1, 1;
		

Crossrefs

Programs

  • Maple
    G:=(1-z+z*g[1])/(1-t*x*z*g[1]): for i from 1 to 9 do g[i]:=(1-z+z*g[i+1])/(1-t^(2*i+1)*x*z*g[i+1]) od: g[10]:=0: x:=1: Gser:=simplify(series(G,z=0,9)): for n from 0 to 7 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 0 to 7 do seq(coeff(P[n],t,j),j=0..n^2) od; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, y, t) option remember; expand(`if`(y>n, 0,
          `if`(n=0, 1, `if`(t<0, 0, b(n-1, y+1, 1)*z^(y+1/2))+
          `if`(y<1, 0, b(n-1, y-1, 0)*z^(y-1/2))+
          `if`(t>0 or y<1, 0, b(n-1, y-1, -1)*z^(1/2-y)))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..n^2))(b(2*n, 0$2)):
    seq(T(n), n=0..8);  # Alois P. Heinz, Jun 19 2016
  • Mathematica
    b[n_, y_, t_] := b[n, y, t] = Expand[If[y > n, 0, If[n == 0, 1, If[t < 0, 0, b[n - 1, y + 1, 1]*z^(y + 1/2)] + If[y < 1, 0, b[n - 1, y - 1, 0]*z^(y - 1/2)] + If[t > 0 || y < 1, 0, b[n - 1, y - 1, -1]*z^(1/2 - y)]]]]; T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 0, n^2}]][b[2*n, 0, 0]]; Table[T[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Dec 20 2016, after Alois P. Heinz *)

Formula

Sum_{k=0..n^2} k*T(n,k) = A129173(n).
G.f.: G(t,z) = H(t,1,z), where H(t,x,z) = 1+txzH(t,t^2*x,z)H(t,x,z) + z[H(t,t^2*x,z)-1] (H(t,x,z) is the trivariate g.f. for skew Dyck paths according to area, semiabscissa of the last point on the x-axis and semilength, marked by t,x and z, respectively).

A274373 Sum of the areas of all modified skew Dyck paths of semilength n.

Original entry on oeis.org

0, 1, 6, 35, 188, 989, 5131, 26411, 135229, 689814, 3509014, 17811637, 90256685, 456719880, 2308440442, 11656409995, 58809893357, 296500180806, 1493924791698, 7523064390774, 37866103978109, 190510720248534, 958122016323881, 4816944544836927, 24209532464417585
Offset: 0

Views

Author

Alois P. Heinz, Jun 19 2016

Keywords

Comments

A modified skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1) (up), D=(1,-1) (down) and A=(-1,1) (anti-down) so that A and D steps do not overlap.
a(n)^(1/n) tends to 5. - Vaclav Kotesovec, Jun 26 2016

Examples

			a(3) = 35 = 9+7+5+6+5+3 = sum of the areas of UUUDDD, UUDUDD, UUDDUD, UAUDDD, UDUUDD, UDUDUD, respectively.
		

Crossrefs

Programs

  • Maple
    b:= proc(x, y, t, n) option remember; `if`(y>n, 0, `if`(n=y,
         `if`(t=2, 0, [1, 0]), (p-> p+[0, p[1]*(2*y+1)])(b(x+1, y
          +1, 0, n-1))+`if`(t<>1 and x>0, b(x-1, y+1, 2, n-1), 0)
          +`if`(t<>2 and y>0, b(x+1, y-1, 1, n-1), 0)))
        end:
    a:= n-> b(0$3, 2*n)[2]:
    seq(a(n), n=0..30);
  • Mathematica
    b[x_, y_, t_, n_] := b[x, y, t, n] = If[y > n, 0, If[n == y, If[t == 2, {0, 0}, {1, 0}], Function[p, p + {0, p[[1]] (2y + 1)}][b[x + 1, y + 1, 0, n - 1]] + If[t != 1 && x > 0, b[x - 1, y + 1, 2, n - 1], 0] + If[t != 2 && y > 0, b[x + 1, y - 1, 1, n - 1], 0]]];
    a[n_] := b[0, 0, 0, 2 n][[2]];
    a /@ Range[0, 30] (* Jean-François Alcover, Dec 29 2020, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=n..n^2} k * A274372(n,k).

A274054 Number of modified skew Dyck paths of semilength n such that the area between the x-axis and the path is n*(n+1)/2.

Original entry on oeis.org

1, 1, 0, 1, 3, 6, 14, 40, 140, 422, 1346, 4487, 15234, 52632, 183913, 651948, 2336751, 8438406, 30712379, 112603500, 415459873, 1541646225, 5750112809, 21548036621, 81096740799, 306404247854, 1161863199131, 4420429256826, 16869986745367, 64567073382731
Offset: 0

Views

Author

Alois P. Heinz, Jun 19 2016

Keywords

Comments

A modified skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1) (up), D=(1,-1) (down) and A=(-1,1) (anti-down) so that A and D steps do not overlap.

Examples

			a(1) = 1:   /\
.
            /\
            \ \
a(3) = 1:   /  \
.
                /\                          /\
               /  \         /\/\/\         /  \
a(4) = 3:   /\/    \   ,   /      \   ,   /    \/\   .
		

Crossrefs

Formula

a(n) = A274372(n,n*(n+1)/2) = A274372(n,A000217(n)).

A274376 Number of modified skew Dyck paths such that the area between the x-axis and the path is n.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 5, 8, 12, 20, 32, 52, 84, 135, 219, 353, 572, 924, 1495, 2419, 3912, 6331, 10240, 16570, 26807, 43374, 70178, 113546, 183721, 297258, 480974, 778220, 1259184, 2037389, 3296554, 5333923, 8630446, 13964340, 22594740, 36559034, 59153708, 95712668
Offset: 0

Views

Author

Alois P. Heinz, Jun 19 2016

Keywords

Comments

A modified skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1) (up), D=(1,-1) (down) and A=(-1,1) (anti-down) so that A and D steps do not overlap.

Examples

			               /\    /\
a(5) = 3:   /\/  \  /  \/\  /\/\/\/\/\  .
.
            /\
            \ \    /\          /\          /\
a(6) = 5:   /  \  /  \/\/\  /\/  \/\  /\/\/  \  /\/\/\/\/\/\  .
		

Crossrefs

Column sums of A274372.
Cf. A230823.

Formula

a(n) = Sum_{k=0..n} A274372(k,n).
Showing 1-5 of 5 results.